tính nhanh :
1 phần 4 +1 phần 8+ 1 phần 16+ 1 phần 32+ 1 phần 64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}+\frac{1}{128}-\frac{1}{256}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}\)
\(A+2A=\left(\frac{1}{2}-\frac{1}{4}+...-\frac{1}{256}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{128}\right)\)
\(3A=1-\frac{1}{256}< 1\)
\(\Rightarrow A< \frac{1}{3}\).
1/2 + 1/4 +1/8 + 1/16 + 1/32
= 16/32 + 3/32 + 4/32 + 2/32 + 1/32
=26/32 =13/16
A,(2016*2017-1)/2015*2017+2016
=2015*2017+2016/2015*2017+2016
=1
B,18*(1919/2121+888/999)
=18*(19/21+8/9)
=18*(19/21)+18*(8/9)=114/7+16=16+2/7+16=32/2/7
c,gọi s=1/2+1/4+...+1/32
2s=1+1/2+...+1/16
2s-s=(1+1/2+...+1/16)-(1/2+1/4+...+1/32)
s=1-1/32=31/32
a) \(27^{64}:81^{20}=3^{192}:3^{80}=3^{112}\)
b) \(\left(\dfrac{1}{8}\right)^{20}:\left(\dfrac{1}{16}\right)^9=\left(\dfrac{1}{2}\right)^{60}:\left(\dfrac{1}{2}\right)^{36}=\left(\dfrac{1}{2}\right)^{24}\)
c) \(\dfrac{1}{3}:\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{3}-\dfrac{1}{6}=\dfrac{10}{6}-\dfrac{1}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
Tk mình đi mọi người mình bị âm nè!
ai tk mình mình tk lại cho!!!
bài 5 ta tính tổng cả ba số đi rồi quy đồng tử số là ra có gì đâu
\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}\)
= \(\frac{1023}{1024}\)
k mình nha các bạn
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}.\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=...=\frac{1}{2}\)
\(A=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}.\)
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}\)