Cho tam giác $ABC$ có các góc đều nhọn và \(\widehat{A}=45^o\). Vẽ đường cao $BD$ và $CE$ của tam giác $ABC$. Gọi $H$ là giao điểm của $BD$ và $CE$.
a) Chứng minh tứ giác $ADHE$ nội tiếp.
b) Tính tỉ số \(\dfrac{DE}{BC}\).
c) Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Chứng minh \(OA\perp DE\).
sao chụy là cô giáo mà chụy hỏi nhiều zậy
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)