XIN CÁC BẠN HỌC SINH GIỎI TOÁN GIẢI GIÚP MÌNH BÀI NÀY!
\(ChoA=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
\(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
So sánh A và B
Mình đang cần gấp lắm. Giải nhanh giúp mình bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\)
\(=\frac{1}{2}\cdot\frac{1}{2}\)
\(=\frac{1}{4}\)
B) \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)
\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)
\(=\frac{14}{5}:\frac{-69}{20}\)
\(=\frac{-56}{69}\)
Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
=(11+9+2)+(1/2-3/2+5/2)-(2/3+5/3-7/3)
=22+1,5-0
=23.5
Chúc học tốt
\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B
ai trả lời cũng sai hết rồi
Tui Gợi ý là A > B
Bây giờ các bạn ghi cách giải đi
Đặt tử A là T ta có:
5T=5(1+5+52+...+59)
5T=5+52+...+510
5T-T=(5+52+...+510)-(1+5+52+...+59)
T=(510-1)/4
Mẫu A là H tính tương tự đc:(59-1)/4.Thay vào ta có:\(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}\)
B tính tương tự A được \(\frac{3^{10}-1}{3^9-1}\) tới đây sao nx