Chứng tỏ rằng:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{49^2}+\frac{1}{50^2}<1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...........;\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{99\cdot100}\)
\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)\(\Rightarrow S< 1\)
VÌ \(\frac{1}{2\cdot3}< \frac{1}{2\cdot2};.....;\frac{1}{98\cdot99}< \frac{1}{99\cdot99}\)
\(\Rightarrow\)\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+......+\frac{1}{98\cdot99}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}< S\)
\(\Rightarrow\frac{49}{100}< S< 1\)
\(K\)\(mk\)\(nha\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}<\frac{50}{50}=1\)
=> ĐPCM
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
..............
\(\frac{1}{50^2}<\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<1\left(đpcm\right)\)
Gọi biểu thức trên là A.
Ta có:
A < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
A < 1 - 1/100
A < 99/100
Mà 99/100 < 1
=> A < 1
đpcm
đúng nhé
gọi A=1/2^2+1/3^2+...+1/50^2
B=1/1.2+1/2.3+...+1/49.50
ta có:
A=1/2^2+1/3^2+...+1/50^2<B=1/1.2+1/2.3+...+1/49.50 (1)
mà B=1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (2)
kết hợp từ (1) và (2) ta có: A<B<1
=>A<1 (đpcm)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) Chứng tỏ rằng A < 2
Ta có: 1/22 < 1/1.2
1/32 < 1/2.3
1 /4 2 < 1/3.4
.. .........................
1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50
=> A < 1 + (1-1/50)
=> A < 1+49/50
=> A < 99/55 <2
=> A < 2
Ta có: 1/22 < 1/1.2
1/32 < 1/2.3
1 /4 2 < 1/3.4
.. .........................
1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50
=> A < 1 + (1-1/50)
=> A < 1+49/50
=> A < 99/55 <2
=> A < 2
Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 nhé !
Bài 1:
Xét vế phải :
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Đẳng thức được chứng tỏ là đúng
Bài 2 :
Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)
Chúc bạn học tốt ( -_- )
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\Rightarrow A=B\text{(đpcm)}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{49^2}+\frac{1}{50^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{48.49}+\frac{1}{49.50}\)
< \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48.49}+\frac{1}{49.50}=1-\frac{1}{50}<1\) (đpcm)
Ta có:
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{50^2}<\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1-\frac{1}{50}\)
Mà \(1-\frac{1}{50}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1\)