K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

AD BĐT X^3+Y^3>=XY(X+Y) LÀ RA

1 tháng 12 2019

Có BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Áp dụng

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)

\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{1}{xyz}\)

12 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu x ≥ 0, y  ≥  0, z  ≥  0 thì:

x + y + z  ≥  0

x - y 2 + y - z 2 + z - x 2 ≥ 0

Suy ra:

x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z

Hay:  x 3 + y 3 + z 3 3 ≥ x y z

1 tháng 12 2019

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)

đặt \(P=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(z+x\right)}+\frac{xy}{z^2\left(x+y\right)}\)

áp dụng bất đẳng thức cô si ta có:

\(\frac{yz}{x^2\left(y+z\right)}+\frac{y+z}{4yz}\ge\frac{1}{x};\frac{zx}{y^2\left(z+x\right)}+\frac{z+x}{4zx}\ge\frac{1}{y};\frac{xy}{z^2\left(x+y\right)}+\frac{x+y}{4xy}\ge\frac{1}{z}\)

\(\Rightarrow P+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=\frac{3}{2}\left(Q.E.D\right)\)

dấu bằng xảy ra khi x=y=z=1

6 tháng 12 2019

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

25 tháng 10 2020

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Nhìn lozic qué bạn ey!!!