Thực hiện phép chia
x2 - 2016x + 2015 cho x-1
Giai nhanh giup tui nhe, thanks nhieu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (y-476)x2=2196x3
(y-476)x2=2196x2+2196
(y-476)x2-2196x2=2196
(y-476-2196)x2=2196
(y-(476+2196)x2=2196
(y-2672)x2=2196
(y-2672)x2=1098x2
(y-2672)x2-1098x2=0
(y-2672-1098)x2=0
(y-(2672+1098)x2=0
(y-3770)x2=0
y-3770=0
y=3770
ĐS: y=3770
A, (y-476)x2=2196x3
(y-476)x2=2196x2+2196
(y-476)x2-2196x2=2196
(y-476-2196)x2=2196
(y-(476+2196)x2=2196
(y-2672)x2=2196
(y-2672)x2=1098x2
(y-2672)x2-1098x2=0
(y-2672-1098)x2=0
(y-(2672+1098)x2=0
(y-3770)x2=0 y-3770=0
y=3770 ĐS: y=3770
Ta có x=2015 => x+1 =2016.Thay vào biểu thức,ta có:
\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2-x+x+1\)=1
Số bị chia : 216 x 48 = 10368
Thương trong phép chia của Tùng : 10368 : 128 = 81
\(\frac{\left(-4\right)^6.9^5-\left(-6\right)^9.120.1^{2015}}{8^4.3^{12}-6^{11}.2016^0}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5.1}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}.1}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{4}{5}\)
\(\frac{\left(-4\right)^6.9^5-\left(-6\right)^9.120.1^{2015}}{8^4.3^{12}-6^{11}.2016^0}=\frac{\left(-2\right)^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{4}{5}\)
b: \(=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)
\(a,=-3x^3+x^2+9x^2-3x-12x+4=-3x^3+10x^2-15x+4\\ b,=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)
Ta có:
\(\left(x-1\right).\left(x+1\right).\left(x+2\right)\)
\(=\left(x^2+x-x-1\right).\left(x+2\right)\)
\(=\left(x^2-1\right).\left(x+2\right)\)
\(=x^3+2x^2-x-2\)
\(\left(x^2-2016x+2015\right):\left(x-1\right)=x+2017+\frac{4032}{x-1}\)