K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

30 tháng 4 2023

\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)

30 tháng 4 2023

\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)

25 tháng 5 2019

4 tháng 2 2022

lớp 8 có pt bậc 2 ak??

4 tháng 2 2022

Có nhưng giải bằng PT tích nhé

18 tháng 4 2022

đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2

loading...nhowsloading...

21 tháng 4 2022

1c

2c

3a

27 tháng 5 2020

x\(\varepsilon\)(-\(\frac{1}{2}\);\(\frac{1}{2}\))

30 tháng 7 2017


9 tháng 8 2023

\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\) (ĐK: \(x\ne0,x\ne-1\))

\(\Leftrightarrow\dfrac{360\left(x+1\right)}{x\left(x+1\right)}-\dfrac{400x}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow360\left(x+1\right)-400x=x\left(x+1\right)\)

\(\Leftrightarrow360x+360-400x=x^2+x\)

\(\Leftrightarrow-40x+360=x^2+x\)

\(\Leftrightarrow x^2+40x+x-360=0\)

\(\Leftrightarrow x^2+41x-360=0\)

\(\Rightarrow\Delta=41^2-4\cdot1\cdot\left(-360\right)=3121>0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-41+\sqrt{3121}}{2\cdot1}\approx7\left(tm\right)\\x_2=\dfrac{-41-\sqrt{3121}}{2\cdot1}\approx-48\left(tm\right)\end{matrix}\right.\)

9 tháng 8 2023

\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\)

Điều kiện: \(x\ne0;x\ne-1\)

PT \(\Leftrightarrow\dfrac{360\left(x+1\right)-400x}{x\left(x+1\right)}=1\)

\(\Rightarrow-40x+360=x\left(x+1\right)\)

\(\Leftrightarrow-40x+360=x^2+x\)

\(\Leftrightarrow x^2+41x-360=0\)

\(\Leftrightarrow x^2+2.\dfrac{41}{2}.x+\dfrac{1681}{4}=\dfrac{3121}{4}\)

\(\Leftrightarrow\left(x+\dfrac{41}{2}\right)^2=\left(\dfrac{\sqrt{3121}}{2}\right)^2\)

\(\Leftrightarrow x+\dfrac{41}{2}=\dfrac{\sqrt{3121}}{2}\) hoặc \(x+\dfrac{41}{2}=-\dfrac{\sqrt{3121}}{2}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\) hoặc \(x=-\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\)

Vậy...