Cho (P): y=x^2
a/Gọi A và B là 2 điểm thuộc (P) lần lượt có hoành độ lần lượt là 1 và 2 .C/m tam giác AOB không vuông
b/Viết pt đường thẳng (d) //AB tiếp xúc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)
\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)
Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)
2.
\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):
\(x+c=x^2\)
\(\Leftrightarrow x^2-x-c=0\)
\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)
\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)
- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :
\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)
=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )
- Gọi đường thẳng AB có dạng y = ax + b
- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy phương trình đường thẳng AB có dạng : y = x + 2 .
Thay x=2 vào (P), ta được:
\(y=x^2=2^2=4\)
Thay x=-3 vào (P), ta được:
\(y=\left(-3\right)^2=9\)
Vậy: A(2;4) và B(-3;9)
Gọi phương trình đường thẳng AB là (d): y=ax+b
Thay x=2 và y=4 vào (d), ta được:
\(2a+b=4\)(1)
Thay x=-3 và y=9 vào (d), ta được:
\(-3a+b=9\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=4\\-3a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-5\\2a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b-2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=6\end{matrix}\right.\)
Vậy: y=-x+6
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)
=>\(m+1=-\dfrac{1}{2}\)
=>\(m=-\dfrac{3}{2}\)
b: Thay x=2 vào y=x+3, ta được:
\(y=2+3=5\)
Thay x=2 và y=5 vào (d), ta được:
\(2\left(m+1\right)-5=5\)
=>2(m+1)=10
=>m+1=5
=>m=5-1=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)
=>A(0;-5)
\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)
Tọa độ B là:
\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)
=>\(B\left(\dfrac{5}{m+1};0\right)\)
\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)
Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)
Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)
=>\(2\left|m+1\right|=5\)
=>|m+1|=5/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)