(1011+1012+...+2016) x(11:11-11
1012 1013 2017 2 2 3
đây là các phân số nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Q=\(\frac{1010+1011+1012}{1011+1012+1013}\)=\(\frac{1010}{1011+1012+1013}+\frac{1011}{1011+1012+1013}+\frac{1012}{1011+1012+1013}\)
Vì1010/1011>1010/1011+1012+1013
1011/1012>1011/1011+1012+1013
1012/1013>1012/1011+1012+1013
=>P>Q
b) Ta có: \(A=\dfrac{1012+1}{1013+1}\)
\(\Leftrightarrow A-1=\dfrac{1012+1-1013-1}{1013+1}\)
\(\Leftrightarrow A-1=\dfrac{-1}{1013+1}\)
Ta có: \(B=\dfrac{1011+1}{1012+1}\)
\(\Leftrightarrow B-1=\dfrac{1011+1-1012-1}{1012+1}\)
\(\Leftrightarrow B-1=\dfrac{-1}{1012+1}\)
Ta có: \(1013+1>1012+1\)
\(\Leftrightarrow\dfrac{1}{1013+1}< \dfrac{1}{1012+1}\)
\(\Leftrightarrow\dfrac{-1}{1013+1}>\dfrac{-1}{1012+1}\)
\(\Leftrightarrow A-1>B-1\)
hay A>B
Vậy: A>B
Đáp án D.
Cách 1 (Giải theo trắc nghiệm - Tổng quát hóa – Đặc biệt hóa)
Bài toán tổng quát:
Cho
A = 1 1 ! . 2 n ! + 1 2 ! . 2 n − 1 ! + 1 3 ! . 2 n − 2 ! + ... + 1 n − 1 ! . 2 n ! + 1 n ! . n + 1 !
Cho
A = 1 1 ! . 2 n ! + 1 2 ! . 2 n − 1 ! + 1 3 ! . 2 n − 2 ! + ... + 1 n − 1 ! . 2 n ! + 1 n ! . n + 1 !
Giá trị của A là:
A. 2 2 n − 1 − 1 2 n ! .
B. 2 2 n − 1 2 n ! .
C. 2 2 n 2 n + 1 ! .
D. 2 2 n − 1 2 n + 1 ! .
Đặc biệt hóa: Cho n = 2, ta có:
A = 1 1 ! .4 ! + 1 2 ! .3 ! = 1 8 .
Khi n = 2 ứng với 4 đáp án A, B, C, D, ta thấy chỉ có đáp án D:
2 4 − 1 5 ! = 1 8 .
Cách 2 (Làm tự luận)
Ta có:
A = ∑ k = 1 1009 1 k ! . 2019 − k ! ⇒ 2019 ! . A = ∑ k = 1 1009 2019 ! k ! . 2019 − k ! = ∑ k = 1 1009 C 2019 k
Chú ý rằng: C 2019 k = C 2019 2019 − k
nên ∑ k = 1 1009 C 2019 k = ∑ k = 1010 2018 C 2019 k
Ngoài ra 1 + 1 2019 = ∑ k = 0 2019 C 2019 k = 2 2019
⇒ ∑ k = 1 1009 C 2019 k = 1 2 ∑ k = 1 2018 C 2019 k = 1 2 ∑ k = 0 2019 C 2019 k − 2 = 1 2 2 2019 − 2 = 2 2018 − 1.
Do đó A = 2 2018 − 1 2019 ! .