\(x^2+mx-1=0\)
tìm m để pt có 2 nghiệm phân biệt thỏa mãn \(x^3_1+x^3_2=-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Delta=2^2-4\cdot1\left(m-1\right)\)
\(=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(-2\right)^3-3\cdot\left(-2\right)\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(4\left(m^2-m\right)=8\)
=>\(m^2-m=2\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
2: \(x_1^2+2x_2+2x_1x_2+20=0\)
=>\(x_1^2-x_2\left(x_1+x_2\right)+2x_1x_2+20=0\)
=>\(x_1^2-x_2^2+x_1x_2+20=0\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)+m-1+20=0\)
=>\(-2\left(x_1-x_2\right)=-m-19\)
=>2(x1-x2)=m+19
=>\(x_1-x_2=\dfrac{1}{2}\left(m+19\right)\)
=>\(\left(x_1-x_2\right)^2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(-2\right)^2-4\left(m-1\right)=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(4-4m+4=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(m+19\right)^2=4\left(-4m+8\right)=-16m+32\)
=>\(m^2+38m+361+16m-32=0\)
=>\(m^2+54m+329=0\)
=>\(\left[{}\begin{matrix}m=-7\left(nhận\right)\\m=-47\left(nhận\right)\end{matrix}\right.\)
a, \(m=-8=>x^2-3x-10=0\)
\(\Delta=\left(-3\right)^2-4\left(-10\right)=49>0\)
=>pt có 2 nghiệm phân biệt \(=>\left[{}\begin{matrix}x1=\dfrac{3+\sqrt{49}}{2}=5\\x2=\dfrac{3-\sqrt{49}}{2}=-2\end{matrix}\right.\)
b, pt(1) \(=>\Delta=\left(-3\right)^2-4\left(m-2\right)=9-4m+8=17-4m\)
pt (1) có 2 nghiệm phân biệt x1,x2 khi \(17-4m>0< =>m< \dfrac{17}{4}\)
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=3\left(1\right)\\x1x2=m-2\end{matrix}\right.\)
\(x1^3-x2^3+9x1x2=81\)
\(=>\left(x1-x2\right)\left(x1^2+x1x2+x2^2\right)+9\left(m-2\right)=81\)
\(=>x1-x2=\dfrac{81-9\left(m-2\right)}{\left[\left(x1+x2\right)^2-x1x2\right]}\)
\(=>x1-x2=\dfrac{99-9m}{\left[3^2-m+2\right]}=\dfrac{99-9m}{11-m}=9\left(2\right)\)
từ (1)(2)=> hệ pt: \(\left\{{}\begin{matrix}x1+x2=3\\x1-x2=9\end{matrix}\right.=>\left\{{}\begin{matrix}x1=6\\x2=-3\end{matrix}\right.\)
\(=>x1x2=6.\left(-3\right)=m-2=>m=-16\left(tm\right)\)
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
Vì \(a\cdot c=1\cdot\left(-2\right)=-2< 0\)
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\)
Sửa đề: \(x_1^2\cdot x_2+x_1\cdot x_2^2+7>x_1^2+x_2^2+\left(x_1+x_2\right)^2\)
=>\(x_1x_2\left(x_1+x_2\right)+7>\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)^2\)
=>\(-2m+7>m^2-2\left(-2\right)+m^2\)
=>\(2m^2+4< -2m+7\)
=>\(2m^2+2m-3< 0\)
=>\(\dfrac{-1-\sqrt{7}}{2}< m< \dfrac{-1+\sqrt{7}}{2}\)
\(\Delta=m^2+4>0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
\(x_1^3+x_2^3=-4\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)
\(\Leftrightarrow-m^3-3m=-4\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m=1\)
\(\Delta=m^2-4.1.\left(-1\right)=m^2+4>0\) suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
\(x^3_1+x^3_2=-4\\ \Leftrightarrow\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x_2^2\right)=-4\\ \Leftrightarrow-m\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=-4\\ \Leftrightarrow m\left[\left(-m\right)^2-3.\left(-1\right)\right]=4\\ \Leftrightarrow m\left(m+3\right)-4=0\\ \Leftrightarrow m^2+3m-4=0\\ \Leftrightarrow m^2+4m-m-4=0\\ \Leftrightarrow m\left(m+4\right)-\left(m+4\right)=0\\ \Leftrightarrow\left(m+4\right)\left(m-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-4\\m=1\end{matrix}\right.\)