Cho a,b thuộc Z, a<b, b>0. Chứng tò rằng a/b < a+2011/b+2011.
Anh/Chị giúp em bài này với ạ. Em cảm ơn nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A. celebrate B. together C. restaurant D. organize
2. A. pollution B. awareness C. disappear D. addition
3. A. apple B. butter C. mother D. advance
4. A. protection B. referee C. dictation D. increasing
5. A. carriage B. damage C. survive D. lightning
6. A. generosity B. occurrence C. priority D. memorial
1. A. celebrate B. together C. restaurant D. organize
2. A. pollution B. awareness C. disappear D. addition
3. A. apple B. butter C. mother D. advance
4. A. protection B. referee C. dictation D. increasing
5. A. carriage B. damage C. survive D. lightning
6. A. generosity B. occurrence C. priority D. memorial
a: Xét tứ giác ABNC có
M là trung điểm của AN và BC
=>ABNC là hình bình hành
=>AB=CN
b: AB+AC=CN+AC>NC=2AM
a,\(n_{Na}=\dfrac{4,6}{23}=0,2\left(mol\right)\)
PTHH: 2Na + 2H2O → 2NaOH + H2
Mol: 0,2 0,2 0,1
\(V_{H_2}=0,1.22,4=2,24\left(l\right)\)
b,mNaOH=0,2.40=8 (g)
\(C\%_{ddNaOH}=\dfrac{8.100\%}{4,6+200-0,1.2}=3,91\%\)
Ta phải giả sử x,y,z khác 0
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(c/z-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(c/z-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: c/z-b/y>0
<=>c/z>b/y
Theo (*) ta có:
a/x-c/z>0
<=>a/x>c/z
=>a/x>c/z>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: c/z-b/y<0
<=>c/z<b/y
Theo (*) ta có:
a/x-c/z<0
=>a/x<c/z
=>a/x<c/z<b/y.
=>b/y-a/x>0. vô lí vì theo (**) => b/y-a/x<0
Vậy ta phải có:
c/z-b/y=0
Thay vào (*) ta có:
a/x=b/y=c/z.
\(a,=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\\ b,=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\\ c,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ d,=3\left(x^2-2x+5x-10\right)=3\left(x-2\right)\left(x+5\right)\\ e,=-3x^2+6x-x+2=\left(x-2\right)\left(1-3x\right)\\ f,=x^2-x-6x+6=\left(x-1\right)\left(x-6\right)\\ h,=4\left(x^2-3x-6x+18\right)=4\left(x-3\right)\left(x-6\right)\\ i,=3\left(3x^2-3x-8x+5\right)=3\left(x-1\right)\left(3x-8\right)\\ k,=-\left(2x^2+x+4x+2\right)=-\left(2x+1\right)\left(x+2\right)\\ l,=x^2-2xy-5xy+10y^2=\left(x-2y\right)\left(x-5y\right)\\ m,=x^2-xy-2xy+2y^2=\left(x-y\right)\left(x-2y\right)\\ n,=x^2+xy-3xy-3y^2=\left(x+y\right)\left(x-3y\right)\)
Bài này có rất nhiều bạn chịu khó tìm là thấy
http://olm.vn/hoi-dap/question/602922.html
Đề bài đúng với mọi n > 0 không nhất thiết phải nguyên hoặc = 2011.
Cách so sanh thường là xét hiệu rồi biện luận >0 hoặc <0.