K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bn xem thử nhé!!

chứng minh bài này có nhiều cách 
sau đây là một cách khá đơn giản (theo mình) 
xét trong △ABC có H,O lần lượt là trực tâm, tâm đường tròn ngoại tiếp của tam giác. 
gọi M là trung điểm của BC 
kẻ đường kính BK của (O) 
=>tam giác KCB = 90⁰ 
=>KC⊥BC 
H là trực tâm của △ABC 
=>AH⊥BC 
=>AH//KC 
tương tự AK//HC 
=>AHCK là hình bình hành 
=>AH=KC 
△BKC có O,M là trung điểm BK,BC 
=>OM là đường trung bình của △ 
=>OM=KC/2 
=>OM=AH/2 
gọi G là giao điểm AM và HO 
△AHG ∽ △MOG (gg) 
=>AH/OM=AG/GM 
hay AG/GM=2 
AM là trung tuyến của △ABC 
=> G là trọng tâm △ABC 
=> trong một tam giác trọng tâm, trực tâm, tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng

đúng thì t i c k nhé!! 45465465767568

12 tháng 6 2016

Ẹc ẹc mới học xong thi bay hết chữ rùi bạn ơi. Bài này hồi mình có giải trong vbt toán để mk lật xem lại

15 tháng 4 2016

Cho tam giác ABC có trực tâm H , trọng tâm G , O là tâm đường tròn 
ngoại tiếp , I là trung điểm BC , AD là đường kính của (O) . 
Chứng minh H , G , O thẳng hàng ? 
Giải : 
Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn 1/2 (O)) 
Xét tứ giác BHCD ta có : 
BH // DC ( vì cùng vuông góc với AC ) 
CH // DB ( vì cùng vuông góc với AB ) 
Do đó tứ giác BHCD là hình bình hành . 
===> H , I , D thẳng hàng và IH = ID (t/c đường chéo hbhành) 
Ta lại có : OI = 1/2 AH ( đ.trung bình tam giác DAH ) (1) 
GI = 1/2 GA (t/chất trọng tâm của ABC ) (2) 
góc HAG = góc GIO ( so le trong vì AH // OI ) (3) 
Do đó tam giác GAH đồng dạng tam giác GIO ( c.g.c) 
===> góc HGA = góc IGO (góc tương ứng của 2 t.giác đ.dạng ) 
Vì góc HGA và góc IGO là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra H , G , O thẳng hàng . 
Vậy trong 1 tam giác trực tâm , trọng tâm , tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !

3 tháng 5 2017

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85

31 tháng 3 2019

https://olm.vn/hoi-dap/detail/215867258818.html bài này mik giải rồi

10 tháng 2 2018

Mình làm theo cách này hơi dài. Mình có đặt thêm điểm và tạo nhiều hình để làm. Có gì sai sót thông cảm nhé

Cho tam giác ABC nhọn có M,N lần lượt là trung điểm BC và AC. Đường thằng vuông góc với AB kẻ từ B và đường thăng vuông góc với AC kẻ từ C cắt nhau tại D. Gọi H là trực tâm, G là trọng tâm, O là tâm đường tròn ngoại tiếp tam giác ABC

                                                          Giải:

Bạn là CTV nên mình chỉ ghi ý chính thôi

Chứng minh H,M,D thẳng hàng và MH=MD

Do G là trọng tâm tam giác ABC nên 

\(\frac{AG}{AM}=\frac{2}{3}\)

M là trung điểm HD

Nên G cũng là trọng tâm tam giác AHD  (*)

Xét tam giác ACD có  NA=ND

                                    NO//CD

=> O là trung điểm AD

=> HO là trung tuyếntam giác AHD(**)

Từ (*) và (**) => H,G,O thẳng hàng

10 tháng 2 2018

Làm kinh tinh cái gì z

11 tháng 5 2016

 -Trọng tâm tam giác là giao điểm ba đường trung tuyến 
-Trực tâm tam giác là giao điểm bà đường cao kẻ từ 3 đỉnh tam giác 
-Giao điểm ba đường trung trực của tam giác là tâm của đường tròn NGOẠI TIẾP 
-Giao điểm ba đường phân giác trong của tam giác là tâm đường tròng NỘI TIẾP 
Còn các hệ thức trong tam giác vuông mình wên rồi, để bạn nào HS lớp 9 trả 

17 tháng 4 2022

bài này giải đc cách lớp 7

chứng minh định lý phụ : đường trung bình (đường nối bởi 2 điểm trung điểm của cạnh 1 và 2 của 1 tam giác) song song với cạnh còn lại

các bạn tự chứng minh định lý phụ kia, định lý này trên mạng có nhiều (có cách giải lớp 7)  nên mình sẽ ko chứng minh lại nữa

ta áp dụng định lý phụ vào bài:

vì tâm đường tròn tam giác ngoại tiếp là o => o là giao điểm 3 đường trung trực.

F p  

đường thẳng GO cắt AH tại H', F,P,D lần lượt là trung điểm của AG,H'G,BG nên 

FP,PD lần lượt là đường trung bình của tam giác BGH', AGH'

=>  FP//AH', PD//BH'

vì AH là đường cao, OK là đường trung trực , H' thuộc AH=> AH'//OK

mà FP//AH' => FP//OK

vì AK là đường trung tuyến, trọng tâm G => AG=2GK mà Flà trung điểm của AG => FG=GK

xét tam giác FGP,GOK:

FG=GK, góc OGK=FGP (đối đ), góc GFB=GKO ( FP//OK)

=> OG=GP

vì BM là đường trung tuyến, trộng tâm G, D là trung điểm của BG=> DG=GM

xét tam giác PGD,MOG:

OG=GP, DG=GM, góc G1=G2 (đđ)

=> PD//OM mà PD//BH' => BH'//OM mà OM là đường trung trực => BH' là đường cao mà AH' cũng là đường cao => H' là trực tâm=> H trùng với H' => H,G,O thằng hàng

 

30 tháng 3 2017

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

10 tháng 8 2016

Bài này là chứng minh đường thẳng ơ le. 
cách 1:
 

Gọi E,FE,F lần lượt là trung điểm của BC,AC. Ta có EF là đường trung bình của tam giác ABC nên EF//AB.
Ta lại có OF//BH(cùng vuông góc với ACA). Do đó : ˆOFE=ˆABH

Tương tự ˆOEF=ˆBAH

Từ đó ta có tam giác ABH đồng dạng với tam giác EFO

Suy ra AH/OE=AB/EF=2

mà AG/GE=2.
Do đó: AG/EG=AH/OE=2
mà ˆHAG=ˆOEG

⇒ΔHAG∼ΔEOG⇒ˆHGA=ˆEGO

nên ˆHGA+ˆAGO=ˆHGO=180

Vậy H,G,O thẳng hàng.
C2 : dùng véc tơ để tính
C3: dựng đường tròn 9 điểm => ...

10 tháng 8 2016

Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn \(\frac{1}{2}\) (O)) 
Xét tứ giác \(BHCD,\) ta có :  \(BH\) // \(DC\) ( vì cùng vuông góc với \(AC\)
                                                \(CH\)// \(DB\) ( vì cùng vuông góc với AB ) 
Do đó tứ giác \(BHCD\) là hình bình hành . 
\(\Rightarrow\) \(H,\)\(I,\)\(D\) thẳng hàng và \(IH=ID\) (tính chất đường chéo hình bình hành) 
Ta lại có : \(OI=\frac{1}{2}AH\) ( đường trung bình tam giác \(DAH\) )                                        \(\left(1\right)\) 
               \(GI=\frac{1}{2}GA\) (tính chất trọng tâm của \(ABC\) )                                               \(\left(2\right)\)
Góc\(HAG\) =    góc \(GIO\) ( so le trong vì \(AH\) // \(OI\) )                                               \(\left(3\right)\)
Do đó tam giác \(GAH\) đồng dạng tam giác \(GIO\) ( c.g.c) 
\(\Rightarrow\) góc \(HGA\) =    góc \(IGO\) (góc tương ứng của 2 tam giác đồng dạng ) 
Vì góc \(HGA\) và góc \(IGO\) là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra \(H,\) \(G,\)\(O,\)thẳng hàng . 
Vậy trong 1 tam giác trực tâm, trọng tâm, tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !