Thu gọn biểu thức :
N=(-3x^2y)^2*(-5xy^3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=3x^2y-5xy+2x-3x^2y+5xy-4y\)
\(=2x-4y\)
Thay x=2 và y=-1 vào biểu thức A=2x-4y, ta được:
\(A=2\cdot2-4\cdot\left(-1\right)=4+4=8\)
Vậy: Khi x=2 và y=-1 thì A=8
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
A=(\(\dfrac{4}{9}x^4y^2\)).\(\dfrac{2}{5}xy^3\)
=\(\left(\dfrac{4}{9}.\dfrac{2}{5}\right)\).\(\left(x^4x\right)\left(y^2y^3\right)\)
=\(\dfrac{8}{45}x^5y^5\)
a: \(M=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot x^3\cdot xy^2\cdot z^2=\dfrac{1}{2}x^4y^2z^2\)
Hệ số là 1/2
Biến là \(x^4;y^2;z^2\)
b: \(N=x^2y\left(4+5-3\right)=6x^2y=6\cdot2^2\cdot\left(-1\right)=-24\)
a) \(A=\frac{2}{3}x^2y^3\left(-\frac{6}{5}xy\right)\)
\(A=-\frac{4}{5}x^3y^4\)
+Hệ số : \(-\frac{4}{5}\)
+Biến : x3y4
+Bậc : 7
B=(-3x2y3)(5x2y)
B=-15x4y4
+Hệ số : -15
+Biến x4y4
+Bậc : 8
b) \(A.B=\left(-\frac{4}{5}x^3y^4\right)\left(-15x^4y^4\right)\)
\(=12x^7y^8\)
#H
(Sai=sửa)
C= 5xy – 3,5y2 - 2 xy + 1,3 xy + 3x -2y
=(5xy-2xy+1,3xy)-3,5y2 +3x-2y
=4,3xy-3,5y2 +3x-2y
bậc của đa thức C là 2
Bài 1. A= 3x^2y-5x^2y
= 3.(-2)^2.0,5-5.(-2)^2.0,5
= -4
Bài 2. a) A= 3xy^2+8xy+1
b)A= 3.(-1/2).1^2+8.(-1/2).1+1
=-9/2
bài 1:
A=3x^2y-5x^2y=4 tại x=-2vày=0,5
bài 2
a) khi thu gọn A ta được:
A=3xy^2+8xy+1
b) tính giá trị A:
A=3xy^2+8xy+1=-4 tại x=-1/2;y=1
xong rồi đó nếu đúng thì tick cho mình nhé
A = 3:5xy {-2:5\(xy^2z\)}\(^2\)
A= \(\dfrac{3}{5}\)xy (\(-\dfrac{2}{5}\))\(^2\).\(x^2\). \(\left(y^2\right)^2\). \(z^2\)
A= \(\dfrac{3}{5}\)xy. \(\dfrac{4}{25}x^2y^4z^2\)
A= \(\left(\dfrac{3}{5}.\dfrac{4}{25}\right).\left(x.x^2\right).\left(y.y^4\right).z^2\)
A= \(\dfrac{12}{125}x^3y^5z^2\)
Hệ số: \(\dfrac{12}{125}\)
Bậc của đơn thức A là 10
mik chỉ biết giải A thôi B mik không biết làm
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Ta có: \(N=\left(-3x^2y\right)^2\cdot\left(-5xy^3\right)\)
\(=9x^4y^2\cdot\left(-5xy^3\right)\)
\(=\left[9\cdot\left(-5\right)\right]\cdot\left(x^4\cdot x\right)\cdot\left(y^2\cdot y^3\right)\)
\(=-45x^5y^5\)