(Đề thi tuyển sinh vào 10 - Bình Định)
Một mảnh đất hình chữ nhật có chu vi 24m. Nếu tăng độ dài một cạnh thêm 2m và giảm độ dài cạnh còn lại 1 m thì diện tích mảnh đất tăng thêm 1 m2. Tìm độ dài các cạnh của hình chữ nhật ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt chiều dài là a, chiều rộng là b ta có:
2(a+b) = 24 => a+b =12 (1)
Diện tích của mảnh đất là S= a.b
Tăng chiều dài 2m, giảm chiều rộng 1m diện tích sẽ là :
(a+2)(b-1) = a.b -a + 2b - 2
= S -a + 2b - 2= S+1
=>2b - a - 3 =0 => a = 2b -3 (2)
Thế (2) vào (1) ta có: 2b - 3 + b = 12 => 3b = 15 => b = 5, a = 12-5 = 7
Vậy chiều dài là 7m, chiều rộng là 5m
b) Tính detal = b^2 - 4ac = 4(m-1)^2 - 4(m-3)
detal = 4(m^2-2m+1) - 4m +12
= 4m^2 -12m +16
= 4(m^2-3m+4)
=4(m^2 -2.m.3/2 + 9/4 + 7/4)
=4(m-3/2)^2 + 7 >0 với mọi m
Do đó luôn có 2 nghiệm
nửa chu vi hình chữ nhật : 56/2=28cm
gọi x là chiều rộng của hình chữ nhật
chiều dài HCN:28-x(m)
chiều rộng sau khi giảm:x-2(m)
chiều dài sau khi tăng: 28-x+4=32-x(m)
theo đề bài ta có phương trình:
x.(28-x)=8-(x-2)(32-x)
<=>28x-x2=72-34x+x2
<=>62x-2x2-72=0
<=>x=1,21(m)
chiều dài : 28-1,21=26,79(m)
Nếu đúng thì T I C K cho mình nhé
Thống nhất đơn vị đo là m nhá -.-
Nửa chu vi miếng đất : 56 : 2 = 28m
Gọi chiều dài miếng đất là x ( m , \(x\inℕ^∗,x< 28\))
=> Chiều rộng miếng đất = 28 - x ( m )
Giảm chiều rộng 2m và tăng chiều dài 4m
=>\(\hept{\begin{cases}\text{ Chiều rộng mới = 28 - x - 2 = 26 - x ( m )}\\\text{Chiều dài mới = x + 4 ( m )}\end{cases}}\)
Diện tích ban đầu = x( 28 - x ) ( m2 )
Diện tích sau khi thay đổi = ( x + 4 )( 26 - x ) ( m2 )
Khi đó diện tích tăng thêm 8m2
=> Ta có phương trình : x( 28 - x ) + 8 = ( x + 4 )( 26 - x )
<=> 28x - x2 + 8 = 22x - x2 + 104
<=> 28x - x2 - 22x + x2 = 104 - 8
<=> 6x = 96
<=> x = 16 ( tmđk )
Vậy chiều dài miếng đất là 16m
chiều rộng miếng đất = 28 - 16 = 12m
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
diện tích lúc đầu là 108 cm2
ủng hộ cho mình lên 70 nha các bạn
Gọi độ dài của mỗi cạnh của hình chữ nhật là x, và y (m)
Đk : x, y > 0
Tổng độ dài 2 cạnh là:
x + y = 24/2
=> x + y = 12 (1)
Nếu tăng độ dài 1 cạnh (x) lên 2m và giảm cạnh còn lại (y) 1m thì diện tích mảnh đất tăng thêm 1m², ta có:
(x + 2).(y - 1) = xy + 1
=> xy - x + 2y - 2 = xy + 1
=> 2y - x = 3 (2)
Từ (1) và (2), ta có hệ phương trình:
{ x + y = 12
2y - x = 3
=> { x = 12 - y
2y - x + x + y = 3 + 12
=> { x = 12 - y
3y = 15
=> { x = 7 (tm)
y = 5 (tm)
Vậy độ dài các cạnh của hình chữ nhật là 7m và 5m.