K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Ta có \(D=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}.\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)

                                                                   \(=1-\frac{1}{10}=\frac{9}{10}< 1\)

\(\Rightarrow D< 1\)

Vậy \(D< 1\)

10 tháng 6 2016

Ta có: 1/22 < 1/1.2

           1/32 <  1/2.3

          1/42 < 1/3.4

             ......

           1/102 < 1/9.10

=> D < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10

=> D < 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 -1/10

=> D < 1 - 1/10

=> D < 9/10

=. D < 9/10 < 1

=> D < 1 ( đpcm )

1 tháng 6 2018

Câu hỏi của Hoàng Đỗ Việt - Toán lớp 6 | Học trực tuyến

Bài 1 :

Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)

Mặt khác :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)

Từ (1 ) và (2) ta suy ra điều phải chứng minh

Bài 2 : 

Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

MỘT MẶT ,TA CÓ THỂ VIẾT

\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)

\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)

Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)

Từ (1) và (2 ) ta kết luận \(3< S< 6\)

Chúc bạn học tốt ( -_- )

9 tháng 5 2017

Bài này nhiều người đăng lắm,bạn vào câu hỏi tương tự 

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{3\cdot2}\)

...

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)

10 tháng 5 2017

Đặt A=đã cho.

Ta thấy:

1/2^2<1/1*2(vì 2^2>1*2).

1/3^2<1/2*3(vì 3^2>2*3).

...

1/10^2<1/9*10(vì 10^2>9*10).

=>A<1/1*2+1/2*3+1/3*4+...+1/9*10.

=>A<1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10.

=>A<1-1/10.

=>A<9/10.

Mà 9/10<1.

=>A<1.

Vậy A<1(đpcm).

10 tháng 5 2017

khó quá mik trả lời ko được

29 tháng 3 2019

a) \(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)

                  \(\frac{3}{4}:x=\frac{3}{8}\)

                        \(x=2\)

vậy x=2

b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2002}\)

\(x+1=2002\)

\(x=2001\)

vậy x=2001

29 tháng 3 2019

\(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)

\(\frac{3}{4}:x=\frac{5}{8}-\frac{1}{4}\)

\(\frac{3}{4}:x=\frac{5}{8}-\frac{2}{8}\)

\(\frac{3}{4}:x=\frac{3}{8}\)

\(x=\frac{3}{4}:\frac{3}{8}\)

\(x=\frac{3}{4}.\frac{8}{3}\)

\(x=\frac{8}{4}\)

\(x=\frac{1}{2}=2\)

22 tháng 3 2018

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

....

\(\frac{1}{10^2}\)\(\frac{1}{9.10}\)

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\)

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)\(\frac{9}{10}\)< 1

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< 1 ( dpcm )

22 tháng 3 2018

\(\frac{1}{4}\)+\(\frac{1}{9}\)+

8 tháng 8 2017

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}.\)

\(D< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{9}-\frac{1}{10}\)

\(D< 1-\frac{1}{10}\)

\(D< \frac{9}{10}\)

\(\frac{9}{10}< 1\Rightarrow D< 1\)

12 tháng 4 2018

Ta có :  \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}\)

\(\Rightarrow B< \frac{8}{8}=1\)

Vậy \(B< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

12 tháng 4 2018

nhan xet1/2^2<1/1.2=1/1-1/2

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

..................................

1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<

1/1-1/8=8/8-1/8=7/8<1 vay B<1