cho tam giác ABC có BC>AB,p/g góc B cắt AC tại D CMR:CD>DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy K trên BC sao cho BK = BA. Nối KD
ΔDKB và ΔDAB(c.g.c)
Suy ra hai góc\(d_1=d_2\),DE=DA
Mặt khác góc CKD là góc ngoài của tam giác KBD nên gócCKD>góc D1 (1)
Góc D2 là góc ngoài của ΔDBC nên Góc D2>góc BCD (2)
Vì Góc D1=ˆD2 nên từ (1) và (2) suy ra góc CKD>gócBCD
Trong ΔKCD có góc K>góc C nên CD > DK
Hay CD > DA
Thời gian tào hỏa đi là:
20 - 4 = 16(phút)
Quãng đường AB là:
120 x 16 = 1920(km)
Đáp số: 1920 km
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
A B C D H
Xét tam giác BAD và tam giác BHD có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
BD là cạnh huyền chung
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của góc B)
\(\Rightarrow\Delta BAD=\Delta BHD\)(cạnh huyền - góc nhọn)
\(\Rightarrow\)BA = BH; AD = DH (2 cạnh tương ứng)
Xét tam giác DHC có HC > DC - DH (theo bất đẳng thức tam giác)\(\Rightarrow\)HC > DC - DA ( do AD = DH) (1)
Mà HC = BC - BH = BC - BA ( do BA = BH ) (2)
Từ (1) và (2) \(\Rightarrow\)BC - BA > DC - DA ( ĐPCM)
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de