cho biểu thức A=4/2n-1
a số nguyên n phải thỏa mãn điều kiện j để a là phân số
b tìm phân số a khi n=0;n=3;n=5
c tìm các số nguyên n để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số khi n - 3 khác 0 (n nguyên)
Vậy n khác 3(n nguyên) thì A là phân số
* Với n=0 thì A=-1/3
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a, \(ĐK:n-3\ne0\Leftrightarrow n\ne3\)
b, Ta có : \(A=\dfrac{4}{n-3}\left(n\ne3\right)\)
n = 0 ( TMđk )
n = 10 ( TMđk )
n = -2 ( TMđk )
Thay n = 0 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}\)\(=\dfrac{4}{-3}=\dfrac{-4}{3}\)
Vậy giá trị của phân số A tại n=0 là \(\dfrac{-4}{3}\)
Thay n=10 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Vậy giá trị của phân số A tại n=10 là \(\dfrac{4}{7}\)
Thay n=-2 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-7}=\dfrac{-4}{7}\)
Vậy giá trị của phân số A tại n=-2 là \(\dfrac{-4}{7}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là p/s thì n ∉ {-1;1;2;3;4;5;7}
b)
+) n=0; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
a Điều kiện để \(\frac{3}{n+2}\)mà số nguyên n thỏa mãn là n\(\ne\)-2
b, Với n=0
\(\Rightarrow\frac{3}{n+2}=\frac{3}{0+2}=\frac{3}{2}\)
Với n=2
\(\Rightarrow\frac{3}{n+2}=\frac{3}{2+2}=\frac{3}{4}\)
Với n=7
\(\Rightarrow\frac{3}{n+2}=\frac{3}{7+2}=\frac{3}{9}\)
c, Để\(\frac{3}{n+2}\)nhận giá trị số nguyên thì
\(\Leftrightarrow3\)chia hết cho n+2
\(\Rightarrow n+2\inƯ\left(3\right)\)={-1;-3;1;3}
Ta có bảng giá trị
n+2 | -1 | -3 | 1 | 3 |
n | -3 | -5 | -1 | 1 |
Vậy n={-3;-5;-1;1}
cho mình nhé Thảo Nguyên
\(A\) là phân số khi \(n+2\ne0\)
\(\Leftrightarrow n\ne-2\)
b) khi \(n=0\Leftrightarrow A=\frac{3}{2}\)
khi \(n=2\Leftrightarrow A=\frac{3}{4}\)
khi \(n=7\Leftrightarrow A=\frac{1}{3}\)
c) để \(A\in Z\)thì \(3⋮\left(n+2\right)\)
\(\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{\pm1;\pm3\right\}\)
+ \(n+2=-1\Leftrightarrow n=-3\)
+ \(n+2=1\Leftrightarrow n=-1\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=-3\Leftrightarrow n=-5\)
vậy để \(A\in Z\) thì \(n\in\left\{\pm1;-5;-3\right\}\)
a) Để A là phân số thì
\(n+2\ne0=>n\ne-2\)2
b) Zới n=0 (TMĐK) thì biểu phân A là
\(\frac{3}{n+2}=>\frac{3}{0+2}=\frac{3}{2}\)
zậy phân số A là \(\frac{3}{2}\)khi n=0
mấy cái kia tương tự
\(A=\frac{4}{2n-1}\)
a, ĐK : \(2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
b, Khi n = 0
\(A=\frac{4}{2.0-1}=\frac{4}{0-1}=\frac{4}{-1}=-4\)
Khi n = 3
\(A=\frac{4}{2.3-1}=\frac{4}{6-1}=\frac{4}{5}\)
Khi n = 5
\(A=\frac{4}{2.5-1}=\frac{4}{10-1}=\frac{4}{9}\)
c, Để \(A\in Z\)thì \(4⋮2n-1\)hay \(2n-1\inƯ\left(4\right)\)
Ta có bảng sau :
Vậy để A nguyên thì \(n\in\left\{1;0\right\}\)