Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE.
c) Gọi O là giao điểm của HB và KC. Chứng minh: OBC cân.
d) Chứng minh: AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
c: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: \(\widehat{HDB}=\widehat{KEC}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HDB}=\widehat{KEC}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO⊥BC
=>AO⊥DE
Ta có: ΔADE cân tại A
mà AO là đường cao
nên AO là tia phân giác của góc DAE
e: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,O thẳng hàng