Cho tứ giác ABCD nội tiếp nửa đường tròn (O) đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD (F\(\in\) AD; F \(\ne\)O).
a) Chứng minh: Tứ giác ABEF nội tiếp được;
b) Chứng minh: Tia CA là tia phân giác của góc BCF;
c) Gọi M là trung điểm của DE. Chứng minh: CM.DB = DF.DO.