Cho tam giac ABC có do dai 3 canh la AB=8 cm, AC= 6cm, BC=12cm. Trên tia doi tia CA lay diem M sao cho CM=3cm. Tren tia doi tia CB lấy diem N saocho CN=6cm.
Chung minh MN//AB. Tinh do dai doan mN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
------------F-------------/---------M----------/-----------E------------------N
FN =FM+MN do M là trung điểm của FE => FM =ME =4
=>FN= 4+8=12 cm
a)+)Trên tia Ox ta có:OM<ON(vì 2cm<8cm)
=>Điểm M nằm giữa 2 điểm O và N
=>OM+MN=ON
=>2+MN=8
=>MN=8-2=6cm
Vậy MN=6cm
b)+)Tia NM và tia NP đối nhau
\(M\in NM;P\in NP\)
=>Điểm N nằm giữa 2 điểm M và P(1)
+)Ta có:MN=6cm;NP=6cm
=>MN=NP(=6cm)(2)
+)Từ (1) và (2)
=>Điểm N là trung điểm của đoạn thẳng MP
Vậy điểm N là trung điểm của đoạn thẳng MP
Chúc bn học tốt
A) XÉT \(\Delta ABC\)
CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)
THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)
\(\widehat{ACB}=180^0-85^0-40^0\)
\(\widehat{ACB}=55^0\)
\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)
\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)
B) TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)
THAY SỐ: \(40^0+\widehat{CBE}=180^0\)
\(\widehat{CBE}=180^0-40^0\)
\(\widehat{CBE}=140^0\)
TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)
THAY SỐ: \(85^0+\widehat{DAC}=180^0\)
\(\widehat{DAC}=180^0-85^0\)
\(\widehat{DAC}=95^0\)
XÉT \(\Delta CBE\)
CÓ: \(\widehat{CBE}=140^0\)
\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)
MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)
\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)
\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)
XÉT \(\Delta ACD\)
CÓ: AC =AD ( GT)
\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)
\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT)
MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)
\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)
THAY SỐ: \(2\widehat{D}+95^0=180^0\)
\(\widehat{D}=\left(180^0-95^0\right):2\)
\(\widehat{D}=42,5^0\)
XÉT \(\Delta BCD\)
CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)
\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)
TỪ (1) ; (2) \(\Rightarrow CE>CB>CD\)
MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS
CHÚC BN HỌC TỐT!!!!!!
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCBD có
CA,BE là đường trung tuyến
CA cắt BE tại I
Do đó: DI đi qua trung điểm của BC
xet tam giac MNC va tam giac ABC, taco:
goc MCN = goc ACB
MC/AC=NC/BC=1/2
=>tam giác MNC đồng dạng với tam giác ABC (c.g.c)(định lí ta lét)
=>MN=AB/2=4
ta có tam giác MNC đồng dạng với tam giác ABC
=> MN//AC(định lí ta lét đảo)