Tìm a để hệ phương trình ax + y=0, 3x+4y=0. có vô số nghiệm, vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
uses crt;
var a, b: logint;
Begin
write('nhap so a ='); Readln(a);
write('nhap so b ='); readln(b);
If (a = 0 and b = 0)
then write ('pt co nghiem x thuoc R')
else
if (a=0 and b#0) then write('pt vo nghiem')
else
write(nghiẹm la x=': -b/a);
readln
end.
uses crt;
var a, b: logint;
Begin
write('nhap so a ='); Readln(a);
write('nhap so b ='); readln(b);
If (a = 0 and b = 0)
then write ('pt co nghiem x thuoc R')
else
if (a=0 and b#0) then write('pt vo nghiem')
else
write(nghiẹm la x=': -b/a);
readln
end.
Ta có: D = a 1 6 b = a b − 6 ; D x = 2 1 4 b = 2 b − 4 ; D y = a 2 6 4 = 4 a − 12
Hệ phương trình vô nghiệm ⇔ D = 0 D x ≠ 0 D y ≠ 0 ⇔ a b = 6 b ≠ 2 a ≠ 3
Vì 6 = 1 . 6 = 6 .1 = (−1). (−6) = (−6). (−1) = 2.3 = 3.2 = (−2). (−3) = (−3). (−2)
Vậy có 7 cặp (a,b) thoả mãn đề bài.
Đáp án cần chọn là: A
a) Xét \(a=0\) . Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3x=5\\2x+y=b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy khi \(a=0\) và mỗi giá trị \(b\in R\) hệ có duy nhất nghiệm: \(\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi và chỉ khi:
\(\dfrac{2}{3}=\dfrac{1}{a}=\dfrac{b}{5}\).
\(\dfrac{2}{3}=\dfrac{1}{a}\)\(\Leftrightarrow a=\dfrac{3}{2}\); \(\dfrac{2}{3}=\dfrac{b}{5}\)\(\Leftrightarrow b=\dfrac{10}{3}\).
Vậy \(\left(a;b\right)=\left(\dfrac{3}{2};\dfrac{10}{3}\right)\) thì hệ có vô số nghiệm.
b) Xét a = 0. Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2y=0\\3x-4y=b+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1+4y}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy khi a = 0 và với mỗi \(b\in R\) hệ phương trình có nghiệm duy nhất là: \(\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi:\(\dfrac{3}{a}=\dfrac{-4}{2}=\dfrac{b+1}{a}\).
\(\dfrac{3}{a}=\dfrac{-4}{2}\)\(\Rightarrow a=\dfrac{-3}{2}\); \(\dfrac{-4}{2}=\dfrac{b+1}{a}\)\(\Rightarrow b=-2a-1\)\(\Leftrightarrow b=2\).
Vậy \(\left(a;b\right)=\left(\dfrac{-3}{2};2\right)\) hệ có vô số nghiệm.