1.Tính hợp lí
a) 1/2 + 1/6 + 1/12 + 1/20 + 1/30
b)3/10 + 3/40 + 3/88 + 3/154
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20
A=1/2-1/20
A=9/20
D=1/3+1/6+1/12+1/24+1/48
D=1/3+1/2.3+1/3.4+1/4.6+1/6.8
D=1/3+1/2-1/3+1/3-1/4+1/2.(2/4.6+2/6.8)
D=1/3+1/2-1/4+1/2.(1/4-1/6+1/6-1/8)
D=1/3+1/4+1/2.(1/4-1/8)
D=1/3+1/4+1/2.1/8
D=1/3+1/4+1/16
D=31/48
F=0,5-1/3-0,4-4/7-1/6+4/35-1/41
F=1/2-1/3-2/5-4/7-1/6+4/35-1/41
F=1/6-(-6/35)-1/6+4/35-1/41
F=(1/6-1/6)+(6/35+4/35)-1/41
F=0+2/7-1/41
F=2/7+1/41
F=75/287
Chúc bạn học tốt!
a, \(\dfrac{3}{5}.\left(-\dfrac{8}{3}\right)-\dfrac{3}{5}:\left(-\dfrac{3}{2}\right)=\dfrac{3}{5}.\left(-\dfrac{8}{3}\right)-\dfrac{3}{5}.\left(-\dfrac{2}{3}\right)==\dfrac{3}{5}\left(-\dfrac{8}{3}-\dfrac{2}{3}\right)=\dfrac{3}{5}.\left(-\dfrac{10}{3}\right)=-2\)
b, \(-\dfrac{5}{6}.\left(-\dfrac{12}{7}\right)-\left(-\dfrac{21}{15}\right)=-\dfrac{5}{6}.\left(-\dfrac{12}{7}\right)+\dfrac{7}{5}=\dfrac{10}{7}+\dfrac{7}{5}=\dfrac{50+49}{35}=\dfrac{99}{35}\)
a: \(=\dfrac{3}{5}\cdot\left(-\dfrac{8}{3}+\dfrac{-2}{3}\right)=\dfrac{3}{5}\cdot\dfrac{-10}{3}=-2\)
c: \(=\left(0.125\right)^{650}\cdot8^{102}\)
\(=\left(0.125\cdot8\right)^{102}\cdot\left(0.125\right)^{548}\)
\(=\dfrac{1}{8^{548}}\)
mk làm phần a thui nhé
a. A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
A = 1/2 - 1/6
A= 3/6 - 1/6
A = 1/3
\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\)
\(b=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(b=\frac{1}{2}-\frac{1}{14}\)
\(b=\frac{3}{7}\)
\(d=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(d=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(d=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(d=1-\frac{1}{11}\)
\(d=\frac{10}{11}\)
\(e=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(e=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(e=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)
\(\dfrac{1}{2}\cdot1\cdot\dfrac{1}{3}\cdot10\cdot\dfrac{7}{35}\cdot\dfrac{3}{4}\)
\(=\dfrac{1}{2}\cdot10\cdot\dfrac{1}{5}\cdot1\cdot\dfrac{1}{3}\cdot\dfrac{3}{4}\)
\(=\dfrac{10}{10}\cdot\dfrac{1}{4}=\dfrac{1}{4}\)
Bài 1:
a: \(\dfrac{25}{42}-\dfrac{20}{63}=\dfrac{75-40}{126}=\dfrac{35}{126}=\dfrac{5}{18}\)
b: \(\dfrac{9}{20}-\dfrac{13}{75}-\dfrac{1}{6}=\dfrac{135}{300}-\dfrac{52}{300}-\dfrac{50}{300}=\dfrac{33}{300}=\dfrac{11}{100}\)
a: =382-282+531-331
=100+200=300
b: =(7-8)+(9-10)+...+(2009-2010)
=(-1)+(-1)+....+(-1)
=-1002
c: =-(1+2+3+...+2009+2010)
=-2010*2011/2=-2021055
a)\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\left(1-\frac{1}{6}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{5}-\frac{1}{5}\right)\)
\(=\left(1-\frac{1}{6}\right)+0+...+0=1-\frac{1}{6}=\frac{6}{6}-\frac{1}{6}=\frac{5}{6}\)
b)\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\left(\frac{1}{2}-\frac{1}{14}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)\)
\(=\left(\frac{1}{2}-\frac{1}{14}\right)+0+...+0=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)
Nhớ **** cho mình nhé bạn! chúc bạn học tốt
tick đúng cho mik nha please