cho a=102012+102011+102010+102009=8
a, chứng minh rằng a chia hết cho 24
b, chứng minh rằng a ko là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai trả lời được cho tớ bít nhé iu mọi người nhìu!
Chả lời đúng tui t i c k (Ghép các chữ ấy lại)
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.