K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}+1+\dfrac{x+3}{2010}+1=\dfrac{x-1}{2014}+1+\dfrac{x-2}{2015}+1+\dfrac{x-3}{2016}+1\)

=>x+2013=0

hay x=-2013

24 tháng 2 2022

\(\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}+1+\dfrac{x+3}{2010}+1=\dfrac{x-1}{2014}+1+\dfrac{x-2}{2015}+1+\dfrac{x-3}{2016}+1\)

\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2022}+\dfrac{1}{2011}+\dfrac{2}{2010}-\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}\ne0\right)=0\Leftrightarrow x=-2013\)

26 tháng 7 2018

\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}+\dfrac{x+3}{2010}=\dfrac{x-1}{2014}+\dfrac{x-2}{2015}+\dfrac{x-3}{2016}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2012}+1\right)+\left(\dfrac{x+2}{2011}+1\right)+\left(\dfrac{x+3}{2010}\right)=\left(\dfrac{x-1}{2014}+1\right)+\left(\dfrac{x-2}{2015}+1\right)+\left(\dfrac{x-3}{2016}+1\right)\)

\(\Leftrightarrow\dfrac{x+2013}{2012}+\dfrac{x+2013}{2011}+\dfrac{x+2013}{2010}-\dfrac{x+2013}{2014}-\dfrac{x+2013}{2015}-\dfrac{x+2013}{2016}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x+2013=0\)

\(\Leftrightarrow x=-2013\)

11 tháng 5 2023

\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)

\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)

\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)

\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)

\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x-12=0\)

\(\Leftrightarrow x=12\)

13 tháng 12 2018

\(\Rightarrow\frac{x}{2010}+\frac{x+1}{2011}+\frac{x+2}{2012}+\frac{x+3}{2013}+\frac{x+4}{2014}-5=0\)

\(\left(\frac{x}{2010}-1\right)+\left(\frac{x+1}{2011}-1\right)+\left(\frac{x+2}{2012}-1\right)\)\(+\left(\frac{x+3}{2013}-1\right)+\left(\frac{x+4}{2014}-1\right)=0\)

\(\frac{x-2010}{2010}+\frac{x-2010}{2011}+\frac{x-2010}{2012}+\frac{x-2010}{2013}+\frac{x-2010}{2014}=0\)

\(\left(x-2010\right).\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)=0\)

mà \(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\ne0\Rightarrow x+2010=0\Rightarrow x=-2010\)

Vậy x=-2010

14 tháng 12 2018

\(\dfrac{x}{2010}+\dfrac{x+1}{2011}+\dfrac{x+2}{2012}+\dfrac{x+3}{2013}+\dfrac{x+4}{2014}=5\)

\(\Leftrightarrow\left(\dfrac{x}{2010}-1\right)+\left(\dfrac{x+1}{2011}-1\right)+\left(\dfrac{x+2}{2012}-1\right)+\left(\dfrac{x+3}{2013}-1\right)+\left(\dfrac{x+4}{2014}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2010}{2010}+\dfrac{x-2010}{2011}+\dfrac{x-2010}{2012}+\dfrac{x-2010}{2013}+\dfrac{x-2010}{2014}=0\)

\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)=0\)

\(\Leftrightarrow x=2010\)

15 tháng 4 2018

a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)

ĐK:\(x\ne0\)

\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)

15 tháng 4 2018

\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)

5 tháng 7 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)

Vì \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\) 

=> \(x+2014=0\) 

                  \(x=0-2014\) 

                  \(x=-2014\)

21 tháng 3 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`

`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`

`=>x=-2014`

 

8 tháng 3 2018

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)

\(\Leftrightarrow\)\(2^x.15=480\)

\(\Rightarrow\)\(2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

Vậy x = 5.

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Ta có:

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)

Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)

\(\Leftrightarrow x=2013\)

Vậy PT có nghiệm \(x=2013\)