Chứng minh rằng có thể tìm được một số tự nhiên k sao cho 1983k - 1 chia hết cho 105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2
Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2
Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)
Xét TH1: 2K+(2K+2)
Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2
Vì 4 chia hết cho và 2 chia hết cho 2 => 4K+2 chia hết cho 2
Xét TH2: 2K+(2K+1)
Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2
=> 4K+1 không chia hết cho 2
Xét TH3: (2K+2)+(2K+1)
Ta có: (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2
=> 4K+3 không chia hết cho 2
Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.