K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

ai bt nhắn vô đây giúp mink nhé. tks!!

27 tháng 5 2021

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

27 tháng 5 2021

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

22 tháng 10 2017

vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1         =>a,b,c=3

28 tháng 10 2019

Bạn tham khảo nhé!!!!

a3+b3=3ab−1

⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0

⇔(a+b)3−3ab(a+b)−3ab+1=0

⇔(a+b)3+1−3ab(a+b+1)=0

⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0

⇔(a+b+1)(a2+b2+1−ab−a−b)=0

Vì a,b>0a,b>0 nên a+b+1≠0

Do đó:

a2+b2+1−a−b−ab=0

\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0

a=b=1

Do đó: a2018+b2019=1+1=2

Ta có đpcm.

28 tháng 10 2019

đề lm j cho a3+b3=3ab-1 đâu bạn