A=1/12+1/22+1/33+1/44+....+1/550
chứng minh A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Ta có: 1/51 > 1/100 ; 1/52>1/100 ..... ; 1/99>1/100
=> 1/51+1/52+...+1/100 > 1/100+1/100+.....+1/100 ( 50 số ) = 50/100=1/2 (1)
Ta lại có: 1/52<1/51; 1/53<1/51;....; 1/100<1/51
=> 1/51+1/52+....+1/100<1/51+1/51+.......+1/51 ( 50 số = 50/51<1 (2)
Từ (1) (2) => đpcm
Câu b làm tương tự :)
A = {x thuộc N/ x < 50 ;x = 2k + 1}
B = {x thuộc N/ x < 100; x = 11k}
C = {x thuộc N/ x có 31 ngày}
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
a) \(-\frac{11}{18}\)
b)\(-\frac{3}{2}\)
c)\(\frac{49}{78}\)
d)\(\frac{23}{11}\)
e) \(\frac{11.12+22.24+44.48}{33.36+66.72+132.144}\)
\(=\frac{11.12+22.24+44.48}{11.3.12.3+22.3.3.24+44.3.348}\)
\(=\frac{11.12+22.24+44.48}{\left(1.12+22.24+44.48\right).9}\)
\(=\frac{1}{9}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)