Cho a<b. chứng minh -2a+3>-2b+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
a^3+2b^3=a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}=3ab^2$
$a^3+1+1\geq 3a$
$b^3+1+1\geq 3b$
Cộng theo vế các BĐT trên:
$a^3+2b^3+(a^3+2)+2(b^3+2)\geq 3ab^2+3a+6b$
$\Leftrightarrow 2(a^3+2b^3)+6\geq 3(ab^2+a+2b)=3.4=12$
$\Rightarrow a^3+2b^3\geq (12-6):2=3$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=1$
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
a3-4a2b=2b3-5ab2
=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0
=>(a-b)3-b(a2-2ab+b2)=0
=>(a-b)2(a-2b)=0
=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)
=>a=2b. Thay a=2b vào bt P ta đc P=1
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
a<b => 2a<2b cho nên -2a>-2b
do đó -2a+3>-2b+3