K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

 Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

7 tháng 11 2021

1) ADME là h.b.h (vì có 2 cặp cạnh đối song song)
2) Vì ADME là hình chữ nhật nên O là trung điểm 2 đường chéo AM và DE.
Xét tam giác AHM vuông tại H, đường trung tuyến HO, khi đó HO = AO = OM
Vậy tam giác AHO cân ở O
3)
a, Tam giác ABC vuông tại A nên ˆDAE=900DAE^=900
Mà ADME là h.b.h nên tứ giác ADME là hình chữ nhật
b, Vì tứ giác AEMD là hình chữ nhật nên ED=AM
Để DE có độ dài nhỏ nhất thì AM có độ dài nhỏ nhất hay M là chân đường vuông góc hạ từ A xuống BC

7 tháng 11 2021
hello bn mình là đức
5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

Lời giải:

a) Ta có:

{MEACABACMEABMEA=900{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900

{MFABABACMFACMFA=900{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900

Tam giác ABCABC vuông tại AA nên EAF=900∠EAF=900

Tứ giác AFMEAFME có 3 góc MEA=MFA=EAF=900∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.

b)

Vì MEAC,MFABME∥AC,MF∥AB nên áp dụng định lý Thales ta có:

MEAC=BMBC;MFAB=CMBCMEAC=BMBC;MFAB=CMBC

Chia hai vế: MEMF.ABAC=BMCM⇒MEMF.ABAC=BMCM

Vì AFMEAFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MFME=MF

MEMF=1ABAC=BMCM⇔MEMF=1⇔ABAC=BMCM

ABAB+AC=BMBM+CM=BMBC⇔ABAB+AC=BMBM+CM=BMBC

Vậy điểm M nằm trên BC sao cho BMBC=ABAB+ACBMBC=ABAB+AC thì AFMEAFME là hình vuông.

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)

=>AM là tia phân giác của \(\widehat{BAC}\)

=>M là chân đường phân giác kẻ từ A xuống BC

5 tháng 8 2018

a,  \(MD//AB,AB\perp AC\left(gt\right)\Rightarrow MD\perp AC\Rightarrow\widehat{MDA}=90^0\)

\(ME//AC,AB\perp AC\left(gt\right)\Rightarrow ME\perp AB\Rightarrow\widehat{MEA}=90^0\)

Tứ giác MDAE có 3 góc vuông nên là hình chữ nhật.

b, Hình chữ nhật có 1 đường chéo là đường phân giác thì là hình vuông 

Do đó: \(MDAE\) là hình vuông \(\Leftrightarrow\) AM là tia phân giác của \(\widehat{DAE}\)

Vậy M là giao điểm giữa tia p/g của \(\widehat{DAE}\) và cạnh BC thì MDAE là hình vuông.

c, MDAE là hình chữ nhật (cmt) \(\Rightarrow DE=AM\) (tính chất của HCN)

AM ngắn nhất khi AM là đường cao.

Vậy DE ngắn nhất khi AM là đường cao của \(\Delta ABC.\)

Chúc bạn học tốt.

12 tháng 8 2018

Cảm ơn :)))