K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

22 tháng 6 2021

Để \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

<=> \(\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)

<=> \(\dfrac{a^2-2ab+b^2}{ab}\ge0\)

<=> \(\dfrac{\left(a-b\right)^2}{ab}\ge0\)

Mà \(\left(a-b\right)^2\ge0\)

\(\dfrac{a}{b}>0\) <=> ab > 0

=> đpcm

Dấu "=" xảy ra <=> a = b

19 tháng 9 2019

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)

\(\Leftrightarrow1+\frac{b}{a}+\frac{a}{b}+1\ge4\)

\(\Leftrightarrow\frac{b^2+a^2}{ab}\ge2\)

Vì a > 0 và b > 0  \(\Rightarrow ab>0\)

Vậy \(\frac{b^2+a^2}{ab}\ge2\Leftrightarrow b^2+a^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) 

Vậy bất đẳng thức được chứng minh.

16 tháng 4 2021

bài này có nhiều hướng đi lắm =))

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)

1. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)

=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge\frac{4}{a+b}\cdot\left(a+b\right)=4\). Dấu "=" xảy ra <=> a=b

2. Áp dụng bất đẳng thức AM-GM ta có : \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)\(a+b\ge2\sqrt{ab}\)

=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge2\sqrt{\frac{1}{ab}}\cdot2\sqrt{ab}=4\). Dấu "=" xảy ra <=> a=b

3. \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=1+\frac{b}{a}+\frac{a}{b}+1\ge2+2\sqrt{\frac{b}{a}\cdot\frac{a}{b}}=2+2=4\)(AM-GM)

Dấu "=" xảy ra <=> a=b

26 tháng 4 2017

Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)

\(\dfrac{a}{b}>0\)

Ta có:

\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)

Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)

27 tháng 4 2017

Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?

Vào đây đi:

dfrac{a}{b}+\dfrac{b}{a - Hoc24