K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

a) Xét tam giác BKC và CHB có:

góc B= góc C (tính chất tam giác cân)

góc BKC = góc BHC = 90 độ

=> Tam giác BKC đồng dạng tam giác CHB

=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)

b) Tam giác BHA đồng dạng tam giác CKA (g-g)

=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)

=> \(\frac{AK}{AB}=\frac{AH}{AC}\)

=> KH//BC (Định lí Ta - lét đảo)

c) Ta có theo hệ quả Ta-let:

\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)

Ta có: AK2+KC2=b2  (1)

             KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)

Trừ 2 cho 1, ta có:   -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)

Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)

25 tháng 3 2019

a)Hai tam giác vuông  \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C

b) Vì tam giác AHC đồng dạng tam giác BKC nên

\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)

Theo định lý Pytago ta có 

\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)

\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)

\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)

Theo Pytago ta có

\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)

\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)

b) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có 

\(\widehat{KBC}=\widehat{HCB}\)(ΔBAC cân tại A)

Do đó: ΔBKC\(\sim\)ΔCHB(g-g)

a) Áp dụng định lí Pytago vào ΔBKC vuông tại K, ta được:

\(BC^2=BK^2+CK^2\)

\(\Leftrightarrow CK^2=BC^2-BK^2=5^2-3^2=16\)

hay CK=4(cm)

Diện tích tam giác BKC là:

\(S_{BKC}=\dfrac{BK\cdot KC}{2}=\dfrac{3\cdot4}{2}=\dfrac{12}{2}=6\left(cm^2\right)\)

15 tháng 5 2021

a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

BK là pg \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)

=> AK = 3cm ; CK = 5 cm

b/ Xét t/g ABC và t/g HBA có

\(\widehat{ABC}\) chung

\(\widehat{BAC}=\widehat{AHB}=90^o\)

=> t/g ABC ~ t/g HBA

=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=> \(AB^2=BC.HB\)

c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)

 t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b:AB=căn 3,6*10=6(cm)

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>S HAB/S HCA=(AB/CA)^2

10 tháng 3 2021

a) Xét \(\Delta ABC\) và \(\Delta HBA\) có \(\widehat{BAC}=\widehat{BHA}=90^o;\widehat{B}-\text{góc chung}\)

\(\Rightarrow \Delta ABC\sim\Delta HBA(g.g)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{BA}\Rightarrow AB^2=BH.BC\)

 

10 tháng 3 2021

b) Tương tự câu a

c) Ta có \(AB.AC=2S_{ABC}=AH.BC\)

12 tháng 5 2022

(Tự vẽ hình)

a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Áp dụng định lý Pytago có:

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)

29 tháng 4 2022

help