Bài 2 cho tam giác ABC ( góc A = 90 độ) đường trung trực của AB cắt AB tại E và cắt BC tại G
a) chưngs minh DA=DB
b) tư F vẽ DH vuông góc AC(H thuộc AC) CM FH vuông góc EF
c)Chưngs minh FH=AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét 2 tam giác vuông BAH và tg vuông DAH, có:
AH là cạnh chung
HB = HC
\(\Rightarrow\Delta BAH=\Delta DAH\) (2 cạnh góc vuông)
a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)
b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)
Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:
\(\widehat{AHE}=\widehat{HEF}\)(so le trong)
AF: cạnh chung
\(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))
Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)
Suy ra FH = AE ( hai cạnh tương ứng)
d) Chứng minh EH là đường trung bình sau đó suy ra đpcm
Giải : a) Vì F thuộc đường trung tực của AB => FA = FB (đpcm)
b) Vì tam giác ABC vuông tại A => AB vuông góc với AC
Vì EF là đường trung trực của AB => EF vuông góc với AB => EF // AC
Mà FH vuông góc với AC => FH vuông góc với EF (đpcm)
c) Vì EF // AC (cmt phần b ) => \(\widehat{FEH}=\widehat{EHA}\)(so le trong ) và \(\widehat{FHE}=\widehat{HEA}\)(so le trong )
Xét tam giác AEH và tam giác FHE có : \(\hept{\begin{cases}\widehat{FHE}=\widehat{HEA}\\ChungEH\\\widehat{FEH}=\widehat{EHA}\end{cases}}\)=> Tam giác EAH = Tam giác HFE (g-c-g)
=> AE = FH ( cạnh tương ứng) (đpcm)
d)