1.Cho n > 2 và ko chia hết cho 3.CM rằng n2 -1 và n2 + 1 ko thể đồng thời là 2 số nguyên tố
2.Cho p là số nguyên tố > 3
a,Chứng minh p có dạng 6k + 1 hoặc 6k +5
b,Biết 8p + 1 cũng là 1 số nguyên tố , Cm 4p + 1 là hợp số
3.Cho p và p +8 đều là số nguyên tố (p > 3).Hỏi p +100 là hợp số hay số nguyên tố
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3