cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
25 tháng 12 2016
Ta có hình vẽ:
Xét tam giác ABD và tam giác ACE có:
AB = AC (do tam giác ABC cân)
góc ABC = góc ACB (do tam giác ABC cân)
BD = CE (GT)
Vậy tam giác ABD = tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
TL
2
12 tháng 2 2023
Góc " M , N " ở đâu ra đấy ạ?-
Đọc mãi vẫn chx xác nhận được " M , N " ở đâu ra=))-
16 tháng 3 2023
1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc MBD=góc NCE
=.ΔMDB=ΔNEC
=>DM=EN
2: Xét tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường và ME//ND
1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).
\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)
-Xét △MDB và △NEC có:
\(\widehat{MBD}=\widehat{NCE}\) (cmt)
\(BD=CE\)
\(\widehat{MDB}=\widehat{NEC}=90^0\)
\(\Rightarrow\)△MDB=△NEC (g-c-g).
\(\Rightarrow DM=EN\) (2 cạnh tương ứng).
2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN
-Xét △EMN và △DNM có:
\(DM=EN\) (cmt).
\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).
MN là cạnh chung.
\(\Rightarrow\)△EMN=△DNM (c-g-c).
\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.
3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?
3) -Mình nói tóm tắt:
-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.
-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.
-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON
-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.
-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.
Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.
-\(S_{AOC}=\dfrac{1}{2}AC.OC\)
\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)
\(\Rightarrow AC.OC=CK.OA\)
\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)
\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)
\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)
\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)
\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)
\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)