Tìm sô nguyên x để biểu thức A đạt giá trị nhỏ nhất , với A = \(\frac{13}{17-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
Bài A:
=>17\(⋮\) x-13
x-13\(\in\) Ư(17)
x-13=1
x=13+1
x=14
x-13=17
x=17+13
x=30
bạn tự làm tiếp nha
\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)
Vậy với x=4 thì A đạt giá trị nhỏ nhất.
a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)
b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
A nhỏ nhất mà x nguyên => 17-x là nhỏ nhất và còn là âm (x khác 17 )=> x là số lớn nhất ( tìm được à? )