Mọi người giúp em giải nhanh bài này với ạ, em đang cần gấp ạ. Em cảm ơn nhiều.
a) A= \(\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)Với x lớn hơn hoặc bằng 0, x khác 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(A=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)
\(B=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(B=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x+2}{\sqrt{x}}\)
Nếu không phiền, bạn có thể giải chi tiết cho mình được không ạ. Mình cảm ơn nhiều !
2.
\(\frac{1}{G}=\frac{2x-5\sqrt{x}+18}{\sqrt{x}}=2\sqrt{x}-5+\frac{18}{\sqrt{x}}\)
\(=2\sqrt{x}+\frac{18}{\sqrt{x}}-5\geq 2\sqrt{2.18}-5=7\) theo BĐT AM-GM
\(\Rightarrow G\leq \frac{1}{7}\)
Vậy \(G_{\max}=\frac{1}{7}\Leftrightarrow x=9\)
1.
\(\frac{1}{K}=\frac{x-2\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}\)
\(=\frac{4\sqrt{x}}{9}+\frac{4}{\sqrt{x}}+\frac{5\sqrt{x}}{9}-2\)
\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{9}}{9}-2=\frac{7}{3}\) (theo BĐT AM-GM)
\(\Rightarrow K\leq \frac{3}{7}\)
Vậy \(K_{\max}=\frac{3}{7}\Leftrightarrow x=9\)
a, ĐKXĐ:\(x\ne-3\)
\(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+5}{x+3}-\dfrac{2}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+3}{x+3}\\ \Leftrightarrow x+1=1\\ \Leftrightarrow x=0\left(tm\right)\)
b, ĐKXĐ:\(x>2\)
\(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\\ \Leftrightarrow x^2-4x-2=x-2\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)