K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó: ΔBAE=ΔBIE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó: ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại M

c: Xét ΔBMC có 

BA/AM=BI/IC

nên AI//MC

a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó:ΔABE=ΔIBE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó;ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại E

c: Xét ΔBMC có BA/AM=BI/IC

nên AI//MC

4 tháng 3 2022

chúc mừng cj lên đc đại tướng

22 tháng 2 2020

a, Xét △ABE vuông tại A và △IBE vuông tại I

Có: EB là cạnh chung

       IBE = ABE (gt)

=> △ABE = △IBE (ch-gn)

b, Xét △ICE vuông tại I và △AME vuông tại A

Có: IE = AE (△IBE = △ABE)

    IEC = AEM (2 góc đối đỉnh)

=> △ICE = △AME (cgv-gn)

=> CE = ME (2 cạnh tương ứng)

=> △CEM cân tại E

c, Xét △IBA có: AB = IB (△ABE = △IBE)  => △IBA cân tại B => BIA = (180o - IBA) : 2      (1)

Ta có: BC = IB + IC và BM = AB + AM

Mà IB = AB (cmt) ; IC = AM (△ICE = △AME) 

=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2    (2)

Từ (1), (2) => BIA = BCM 

Mà 2 góc này nằm ở vị trí đồng vị

=> AI // MC (dhnb)

20 tháng 3 2022

`Answer:`

undefined

a. Xét `\triangleABE` và `triangleBEI:`

`BE` chung

`\hat{ABE}=\hat{EBI}`

`\hat{BAE}=\hat{EIB}=90^o`

`=>\triangleABE=\triangleIBE(ch-gn)`

`=>AE=IE`

b. Ta có: `A,I,C,M` cùng thuộc đường tròn trên đường kính `MC`

Mà `\hat{AMC}=\hat{MIC}=90^o`

`=>\hat{AMI}=\hat{ACI}`

Xét `\triangleBME` và `\triangleBCE:`

`BE` chung

`\hat{AMI}=\hat{ACI}`

`\hat{MBE}=\hat{CBE}`

`=>\triangleBME=\triangleBCE(g.c.g)`

`=>EM=EC`

`=>\triangleEMC` cân ở `E`

c. Ta có: `A,I,C,M` thuộc đường tròn đường kính `MC`

`=>\hat{AIM}=\hat{ACM}`

Mà theo phần b. `\hat{EMC}` cân nên `\hat{IMC}=\hat{ACM}`

`=>\hat{AIM}=\hat{IMC}` (So le trong)

`\(\Rightarrow AI//MC\)

a, Xét △ABE vuông tại A và △IBE vuông tại I

Có: EB là cạnh chung

       IBE = ABE (gt)

=> △ABE = △IBE (ch-gn)

b, Xét △ICE vuông tại I và △AME vuông tại A

Có: IE = AE (△IBE = △ABE)

    IEC = AEM (2 góc đối đỉnh)

=> △ICE = △AME (cgv-gn)

=> CE = ME (2 cạnh tương ứng)

=> △CEM cân tại E

c, Xét △IBA có: AB = IB (△ABE = △IBE)  => △IBA cân tại B => BIA = (180o - IBA) : 2      (1)

Ta có: BC = IB + IC và BM = AB + AM

Mà IB = AB (cmt) ; IC = AM (△ICE = △AME) 

=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2    (2)

Từ (1), (2) => BIA = BCM 

Mà 2 góc này nằm ở vị trí đồng vị

=> AI // MC (dhnb)

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc hBE

=>ΔABE=ΔHBE

c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBM chung

=>ΔBHM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

mà BN là đường phân giác

nên N là trung điểm của CM

=>NM=NC

a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có

BI chung

\(\widehat{ABI}=\widehat{HBI}\)

Do đó:ΔABI=ΔHBI

b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có

IA=IH

\(\widehat{AIK}=\widehat{HIC}\)

Do đó; ΔAIK=ΔHIC

Suy ra: AK=HC

mà BA=BH

nên BK=BC

=>ΔBKC cân tại B

30 tháng 3 2021

a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)

            BD chung

            góc ABD = góc EBD ( BD là tia p/g của góc B)

do đó :  tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )

30 tháng 3 2021

mình thắc mắc câu d cơ