K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Nguyên lí Đi-rích-clê là Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật

6 tháng 5 2016

  - Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý  “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.                                                    

  - Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:

      Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.

     - Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.

    Nguyên lý Dirichlet cơ bản:

       Nếu nhốt n+1 con thỏ vào n cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con thỏ.

·      Nguyên lý Dirichlet mở rộng:

      Nếu nhốt n con thỏ vào cái chuồng thì tồn tại một chuồng có ít nhất  con thỏ .

     Ở đây kí hiệu  để chỉ phần nguyên của .

      Ta có thể chứng minh nguyên lý Dirichlet mở rộng như sau: Giả sử mọi chuồng thỏ không có đến  ==(con)

                thì số thỏ trong mỗi chuồng đều nhỏ hơn hoặc bằng  con. Từ đó suy ra tổng số con thỏ không vượt quá  con. Điều này vô lý vì có n con thỏ. Vậy giả thiết phản chứng là sai. Nguyên lý Dirichlet mở rộng được chứng minh.

·      Nguyên lý Dirichlet dạng tập hợp:

         Cho A và B là hai tập hợp khác rỗng có số phần tử hữu hạn và số lượng phần tử của A lớn hơn số lượng phần tử của B. Nếu với một quy tắc nào đó, mỗi phần tử của A cho tương ứng với một phần tử của B thì tồn tai ít nhất hai phần tử của A (hai phần tử khác nhau) tương ứng với một phần tử của B.

·      Nguyên lý Dirichlet dạng tập hợp mở rộng:

           Giả sử A, B là hai tập hợp hữu hạn và S(A), S(B) tương ứng kí hiệu là các số lượng phần tử của A và B. Giả sử có một số tự nhiên k nào đó mà S(A) > k S(B) và ta có quy tắc cho tương ứng với mỗi phần tử của A với một phần tử của B. Khi đó tồn tại ít nhất k/1 phần tử của B.

        Chú ý: Khi k = 1 ta có ngay lại nguyên lý Dirichlet.

·      Nguyên lý Dirichlet vô hạn:

        Nếu chia một tập hợp vô hạn các quả táo vào hữu hạn các ngăn kéo thì phải có ít nhất một ngăn kéo chứa vô hạn quả táo.

15 tháng 1 2017

nguyên tắc nhốt thỏ vào lông hả e 

29 tháng 5 2015
  - Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý  “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.                                                    
         - Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
      Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
     - Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.
14 tháng 11 2018

Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.

Định nghĩa[sửa | sửa mã nguồn]

Cho số nguyên dương n, hai số nguyên a,b được gọi là đồng dư theo mô-đun n nếu chúng có cùng số dư khi chia cho n. Điều này tương đương với hiệu a-b chia hết cho n.

Ký hiệu:

{\displaystyle a\equiv b{\pmod {n}}\,}{\displaystyle a\equiv b{\pmod {n}}\,}

Ví dụ:

{\displaystyle 11\equiv 5{\pmod {3}}\,}{\displaystyle 11\equiv 5{\pmod {3}}\,}

Vì 11 và 5 khi chia cho 3 đều cho số dư là 2:

11: 3 = 3 (dư 2)

5: 3 = 1 (dư 2)

Tính chất[sửa | sửa mã nguồn]

Ngoài các tính chất của một quan hệ tương đương (phản xạ, đối xứng, bắc cầu), phép đồng dư còn có thêm các tính chất sau: Có thể cộng, trừ, nhân và nâng lên lũy thừa các đồng dư thức có cùng một mô-đun, cụ thể. Nếu ta có:

{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}

{\displaystyle b_{1}\equiv b_{2}{\pmod {n}}\,}{\displaystyle b_{1}\equiv b_{2}{\pmod {n}}\,}

Thì ta có:

  • {\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}{\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}{\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}{\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}
  • {\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}{\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}, với k nguyên dương.
  • Luật giản ước[sửa | sửa mã nguồn]

    Nếu {\displaystyle (a_{1}*b)\equiv (a_{2}*b){\pmod {n}}\,}{\displaystyle (a_{1}*b)\equiv (a_{2}*b){\pmod {n}}\,} và (b,n)=1 (b,n nguyên tố cùng nhau) thì {\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}

    Nghịch đảo mô-đun[sửa | sửa mã nguồn]

    Nếu số nguyên dương n và số nguyên a nguyên tố cùng nhau thì tồn tại duy nhất một số {\displaystyle x\in \{0,1,2,\cdots ,n-1\}}{\displaystyle x\in \{0,1,2,\cdots ,n-1\}} sao cho: {\displaystyle ax\equiv 1{\pmod {n}}\,}{\displaystyle ax\equiv 1{\pmod {n}}\,}, số x này được gọi là nghịch đảo của a theo mô-đun n.

    Hệ thặng dư đầy đủ[sửa | sửa mã nguồn]

    Tập hợp {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} được gọi là một hệ thặng dư đầy đủ mô-đun n nếu với mọi số nguyên i, {\displaystyle 0\leq i\leq n-1}{\displaystyle 0\leq i\leq n-1}, tồn tại duy nhất chỉ số j sao cho {\displaystyle a_{j}\equiv i{\pmod {n}}\,}{\displaystyle a_{j}\equiv i{\pmod {n}}\,}.

    Tính chất[sửa 

  • Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{a_{1}+a,a_{2}+a,\cdots ,a_{n}+a\}}{\displaystyle \{a_{1}+a,a_{2}+a,\cdots ,a_{n}+a\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a.
  • Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}}{\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{aa_{1},aa_{2},\cdots ,aa_{n}\}}{\displaystyle \{aa_{1},aa_{2},\cdots ,aa_{n}\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a nguyên tố cùng nhau với n.

Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.

VD : 

  • {\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}
  • {\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}
  • {\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}, với k nguyên dương.

Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật
Phần chứng minh bài toán, các bạn chắc gần như ai cũng biết, mình chỉ xin nêu một vài bài toán vận dụng cơ bản.

27 tháng 5 2015

 Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim. 
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.

27 tháng 5 2015

 Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim. 
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.

5. Cho các từ sau đây : xe đạp, cơm nếp, khoài tây, cá quả, cũ rích, xanh tưng, già cấc, mỏng tanh.a, Em có nhận xét gì về nghĩa của các tiếng : đạp, nếp, tây, quá, và cáctiếng rích, tưng, cấc, tanh?b. Các tiếng đạp, nếp, tây, quá khi đi sau các yếu tố chính có nghĩa gì ? Các tiếng rích, tưng, cấc, tanh khi đi sau các yếu tố chính có ý nghĩa gì ?6. Em hãy tìm các từ ghép chính phụ và từ ghép...
Đọc tiếp

5. Cho các từ sau đây : xe đạp, cơm nếp, khoài tây, cá quả, cũ rích, xanh tưng, già cấc, mỏng tanh.

a, Em có nhận xét gì về nghĩa của các tiếng : đạp, nếp, tây, quá, và các

tiếng rích, tưng, cấc, tanh?

b. Các tiếng đạp, nếp, tây, quá khi đi sau các yếu tố chính có nghĩa gì ? Các tiếng rích, tưng, cấc, tanh khi đi sau các yếu tố chính có ý nghĩa gì ?

6. Em hãy tìm các từ ghép chính phụ và từ ghép đẳng lập trong 15 dòng đầu của văn bản Cổng trường mở ra.

7. So sánh nghĩa của từng tiếng trong nhóm các từ ghép sau đây :

a. sửa chữa, đợi chờ, trông nom, tìm kiếm, giảng dạy.

b. gang thép, lắp ghép, tươi sáng.

c. trên dưới, buồn vui, đêm ngày, nhỏ to, sống chết.

8. Giải thích nghĩa của từ ghép được in đậm trong các câu sau :

a. Mọi người phải cùng nhau gánh vác việc chung.

b. Đất nước ta đang trên đà thay da đổi thịt.

c. Bà con lối xóm ăn ở với nhau rất hòa thuận.

d. Chị Võ Thị Sáu có một ý chí sắt đá trước quân thù.

9. Hãy lập một danh mục các từ ghep trong văn bản “ Mẹ tôi” (trang 10-11) rồi phân loại thành từ ghép đẳng lập và từ ghép chính phụ?

10. Miêu tả về đặc điểm cấu tạo và về nghĩa của 5 từ ghép đẳng lập ở bài 9

11. Miêu tả về đặc điểm cấu tạo và về nghĩa của 5 từ ghép chính phụ ở bài 9

12. Cách dùng các từ ghép đẳng lập là danh từ khác với cách dùng các từ đơn là danh từ ntn?

13. Nêu nhận xét về nghĩa của từ ghép chính phụ để phân biệt với các trường hợp không phải là từ ghép?

14. Viết đoạn văn ngắn kểvề ấn tượng trong ngay khai trường đầu tiên trong đó có sử dụng ít nhất hai từ ghép đẳng lập, hai từ ghép chính phụ (gạch chân các từ ghép). Giúp mk nhanh nhé mk cần gấp

4
17 tháng 8 2021

5.

a.

( 1 ) Nhận xét về nghĩa của các tiếng '' đạp , nếp , tây , quả '' là những từ trên đều có nghĩa.

( 2 ) Nhận xét về nghĩa của các tiếng '' rích , cấc , tanh '' là những từ không rõ nghĩa hoặc không có nghĩa

b.

( 1 ) Các tiếng '' đạp , nếp , tây ,quả '' khi đi đi sau các tiếng chính có yếu tố bổ sung nghĩa cho tiếng chính

( 2 ) Các tiếng '' rích , cấc , tanh '' khi sau các tiếng chính có yếu tố biểu cảm

17 tháng 8 2021

6.

Khai trường

Thanh thoát

Bận tâm

Kịp giờ

Căn nhà

Đặc biệt

là gì vậy