Moi nguoi oi giup tui cau nay voi : de 123a chia cho 9 du 2 thi a=???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
di 3 buoc lui 2 buoc=> tien 1 buoc=> di 100 buoc de het quang duong
abcd \(⋮\) 101
<=> abcd = 101k (k > 10 ; k \(\in\)N)
<=> ab = cd
=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)
* Chú thích (ko ghi vào)
\(⋮\) là dấu chia hết
đcpm là điều phải chứng minh
Để căn thức có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x+1}\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1\le0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
Vậy...
Giả sử \(\left(5^n-1\right)⋮4\)
Suy ra \(5^n⋮5\)(phù hợp)
Vậy \(\left(5^n-1\right)⋮4\)
Cách 2
Ta có:
\(5\equiv1\)(mod 4)
Suy ra \(5^n\equiv1\)(mod 4)
Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)
Vậy \(\left(5^n-1\right)⋮4\)
Ta có M =\(\dfrac{1}{3}xy\left(-3xy^2\right)^2\)=\(\dfrac{1}{3}xy.9x^2y^4\)=3\(x^3y^5\).Do đó phần hệ số là 3 và phần biến là \(x^3y^5\)
Ta có : 411\(\equiv\)1 ( mod 5) => 411413 \(\equiv\)1413 ( mod 5)
\(\equiv\) 1 ( mod 5 )
Tương tự với các số 412413 và 413413 Ta có : 411413 + 412413 - 413 413 \(\equiv\) 1 + 2 - 3 ( mod 5 )
\(\equiv\)0 ( mod 5 )
Vậy 411413 + 412413 - 413413 chia hết cho 5
Đầu tiên, để 123a chi hết cho 9 thì a=3 mà để 123a không chia hết cho 9 và dư 2 thì a= 3+2=5 Vậy để 123a không chia hết cho 9 và dư 2 thì a=5