K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

\(\frac{1999.2001-1}{1998+1999.2000}=\frac{1999.2001-\left(1999-1998\right)}{1998+1999.2000}=\frac{1999.2001-1999+1998}{1998+1999.2000}=\frac{1999.\left(20001-1\right)+1998}{1998+1999.2000}=\frac{1999.2000+1998}{1998+1999.2000}=1\)=> đáp án là 7/5

5 tháng 5 2016

có bị thiếu dấu ngoặc không vậy

Ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttat ca nhan voi 7/5 nua

12 tháng 5 2018

A=1

A=(3999999-1)/(1998+3998000)=3999998/3999998=1

11 tháng 6 2015

\(A=\frac{1999\times2001-1}{1998+1999\times2000}=\frac{1999\times2000+1999-1}{1998+1999\times2000}=\frac{1999\times2000+1998}{1998+1999\times2000}=1\)

Ko vo A =

28 tháng 7 2015

\(\frac{1999.2001-1}{1998.1999.2000}.\frac{7}{5}:\frac{14}{15}\)=\(\frac{1.7.15}{1998.5.14}=\frac{1.1.3}{1998.1.2}=\frac{3}{3996}=\frac{1}{1332}\)

28 tháng 7 2015

\(A=\frac{1999\times\left(2000+1\right)-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{15}{14}=\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)

\(A=\frac{1999\times2000+1998}{1998\times1999\times2000}\times\frac{3}{2}=\frac{3999998\times3}{3\times666\times1999\times2000\times2}=\frac{1999999\times2}{666\times1999\times2000\times2}=\frac{1999999}{666\times1999\times2000}=...\)

Em xem lại đề: có thể đề là: 

A = \(\frac{1999\times2001-1}{1998+1999\times2000}\times\frac{7}{5}:\frac{14}{15}\)\(\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)\(\frac{1999\times2000+1998}{1998+1999\times2000}\times\frac{3}{2}=1\times\frac{3}{2}=\frac{3}{2}\)

NM
24 tháng 1 2021

ta có 

\(S_2=\left(1-3\right)+\left(5-7\right)+..+\left(1997-1999\right)+2001\)

ha y \(S_2=-2-2-2..+2001=-2.500+2001=1001\)

\(S_3=\left(1-2-3+4\right)+\left(5-6-7+8\right)+..+\left(1997-1998-1999+2002\right)\)

hay \(S_3=0+0+..+0=0\)

24 tháng 1 2021

\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)+2001\)

\(=\left(-2\right)+\left(-2\right)+....+\left(-2\right)+2001=\left(-2\right).500+2001=-1000+2001=1001\)

\(S_3=\left(0+1-2-3\right)+\left(4+5-6-7\right)+...+\left(1996+1997-1998-1999\right)+2000\)

\(=-4+\left(-4\right)+...+\left(-4\right)+2000=\left(-4\right).500+2000=0\)

3 tháng 3 2017

\(=1\)

4 tháng 3 2017

Bạn chỉ giùm mình từng bước nha, cảm ơn

23 tháng 5 2017

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

23 tháng 5 2017

$\ge $