Bài 1: Cho tam giác ABC có 2 đường trung tuyến BD và CE
a) Tính các tỉ số \(\dfrac{BG}{BD}\) và \(\dfrac{CG}{CE}\)
b) Chứng minh rằng BD+CE> \(\dfrac{3}{2}BC\)
Mong mn giải giúp em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có AE=EB
Và AD=DC
ED là đường trung bình
ED//BC và ED=1/2BC (1)
Ta lại có BM=MG
Và GN=NC
MN là đường trung bình
MN//BC và MN=1/2BC (2)
Từ (1)(2) suy ra
=>ED=MN
Và ED//MN
Vậy đpcm
b,mk k hỉu cho lắm đề câu b
a: G là trọng tâm
=>BG=2/3BD; CG=2/3CE
=>BG=CG
=>DG=GE
b: Xet ΔEBC và ΔDCB có
BC chung
góc ECB=góc DBC
EC=BD
=>ΔEBC=ΔDCB
=>góc ABC=góc ACB
=>ΔACB cân tại A
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(DE=\dfrac{BC}{2}\)
a) ΔABC có 2 đường trung tuyến BD; CE
G là trọng tâm
=> BG/BD = 2/3
CG/CE = 2/3
b) Trong tam giác BGC ta có: BG + GC > BC
=> 2/3DB + 2/3CE > BC (G là trọng tâm)
=> 2/3(DB + CE) > BC
=> 3/2. 2/3 (DB+CE)> 3/2BC
=> (DB + CE)>3/2BC