K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

A B C G E K D F

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: \(\Delta\)ABC đều => ^A=600. Xét \(\Delta\)ADE có: ^A=600, AD=AE

=> \(\Delta\)ADE đều. Mà G là trọng tâm của \(\Delta\)ADE

=> G cũng là giao của 3 đường trung trực trong \(\Delta\)ABC 

=> DG=AG (T/c đường trung trực) (1)

Xét \(\Delta\)GDK và \(\Delta\)FCK:

KD=KC

^DKG=^CKF              => \(\Delta\)GDK=\(\Delta\)FCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì \(\Delta\)ADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét \(\Delta\)ADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét \(\Delta\)AGB và \(\Delta\)CFB có:

AB=CB

^GAB=^CFB           => \(\Delta\)AGB=\(\Delta\)CFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => \(\Delta\)GBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét \(\Delta\)BGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

*Xong*

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

1

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O

 

Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

5
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

7 tháng 5 2021
dài dữ vậy

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

21 tháng 10 2021

Bạn tham khảo nhé:

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE

=> ΔADE đều. Mà G là trọng tâm của ΔADE

=> G cũng là giao của 3 đường trung trực trong ΔABC 

=> DG=AG (T/c đường trung trực) (1)

Xét ΔGDK và ΔFCK:

KD=KC

^DKG=^CKF              => ΔGDK=ΔFCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét ΔAGB và ΔCFB có:

AB=CB

^GAB=^CFB           => ΔAGB=ΔCFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.