K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

 (x-1)^2 +/x-2/ =0

=>|x-2|+x2-2x+1=0

=>đa thức vô nghiệm

ta có (x-2)<(x-1)

mà \(\left(x-1\right)^2\) \(\ge\) \(0\)

\(\left|x-2\right|\ge0\)

do x-2<x-1 

nên hoặc \(\left(x-1\right)^2>0\) và \(\left|x-2\right|>0\)

hoặc \(\left(x-1\right)^2=0\) và |x-2| >0

hoặc \(\left(x-1\right)^2>0\) và | x-2|=0

nên (x-1)^2 +/x-2/ \(\ne\) 0

vậy đa thức trên vô nghiệm

mk cũng ko bít đúng hay sai lun à. ko đúng đừng có  chửi nha, mk làm theo suy nghĩ của mk thui 

23 tháng 4 2015

\(\left(x-5\right)^2\) \(\ge0\) nên \(\left(x-5\right)^2+1\ge1\)

  Vậy đa thức trên vô nghiệm.

10 tháng 4 2019

Mình chỉ trả lời: vì tại x=a bất kì đều có giá trị khác 0 nên (x-5)^2+1 vô nghiệm

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

9 tháng 4 2019

Vì \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\forall x\)

Vậy đa thức A(x) vô nghiệm

ta có A(x)=2x2 + 1 

vì: 2x2 lớn hơn hoặc bằng 0

     1 lớn hơn 0

suy ra: 2x2+1 lớn hơn 0

vậy đa thức A(x) không có nghiệm

25 tháng 4 2018

a) Ta có : \(4x^2-10x+9=0\)

\(\Rightarrow\left(2x\right)^2-2.2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{2}=0\)

\(\Rightarrow\left(2x-\frac{5}{2}\right)^2+\frac{11}{2}=0\)(vô lý)

\(\Rightarrow4x^2-10+9\)vô nghiệm(đpcm)

b) Ta có: \(-1+x-x^2=0\)

\(\Rightarrow\left(-1+x-x^2\right).\left(-1\right)=0\)

\(\Rightarrow x^2-x+1=0\)

\(\Rightarrow x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)

\(\Rightarrow-1+x-x^2\) vô nghiệm(đpcm)

25 tháng 4 2018

bạn giải câu a rõ hơn đc k

20 tháng 5 2015

x^4-2x^2+6

=x^4 - x^2 - x^2 +1 +5

=x^2(x^2-1)-(x^2-1) +5

=(x^2-1)(x^2-1) +5

=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0

Vậy x^4- 2x^2 +6 vô nghiệm

22 tháng 4 2017

Đặt f(x)= \(x^2+4x+5\) \(=x^2+2x+2x+4+1\)

\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)

\(=x\left(x+2\right)+2\left(x+2\right)+1\)

\(=\left(x+2\right)\left(x+2\right)+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)

\(\Rightarrow f\left(x\right)>0\forall x\)

=> Đa thức f(x) trên vô nghiệm

26 tháng 4 2016

Đề hình như sai bạn à

 

2 tháng 4 2018

Bn viết rõ đề ra đi 

3 tháng 4 2018

P(x)= - x+ x- x+ x - 1