Cho tam giác ABC vuông tại A và tia phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E. CMR:
a) tam giác BAD = tam giác BED
b) BD là trung trực của AE
c) AD < DC
d) Trên tia đối của tia AB lấy F sao cho AF = CE. CM 3 điểm E, D, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABC vuông tại A(gt)
=)Â=90 độ
=)tam giác BAD là tam giác vuông tại A
Vì DE vuông góc vs BC (gt)
=)Ê =90 độ
=)tam giác BED là tam giác vuông tại E
xét tam giác BAD vuông tại A và tam giác BED vuông tại E có
Góc ABD =Góc EBD(vì BD là tia phân giác)
BD là cạnh chung
=) tam giác BAD=tam giác BED(ch-cgv)
Xét 2 tam giác vuông ABD và EBD có
Góc ABD=góc EBD(gt)
Cạnh huyền BD chung
=)) tam giác ABD=tam giácEBD (ch-gn)
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
a) Xét \(\Delta\)ABD và \(\Delta\)FBD có
BAD=BFD (=90 độ)
ABD=FBD (BD là tia pg của ABC)
BD là cạnh chung
Do đó \(\Delta\)ABD=\(\Delta\)FBD(chgn)
b)Ta có \(\Delta\)ABD=\(\Delta\)FBD(cmt)
\(\Rightarrow\)AB=FB(2 cạnh t/ứ)
\(\Rightarrow\Delta ABFcântạiB\)
Xét \(\Delta\)ABF cân tại B có : BD là pg ABC hay BD là pg ABF
\(\Rightarrow\)BD đồng thời là đường trung trực của đoạn thẳng À
c)Vì \(\Delta\) DFC vuông tại F
\(\Rightarrow\)cạnh huyền DC là cạnh lớn nhất của \(\Delta\) DFC
\(\Rightarrow\)DC>FD
Mà AD=FD (vì \(\Delta\)ABD=\(\Delta\)FBD)
Nên AD<DC
d) Xét \(\Delta\)ADE và \(\Delta\)FDC có
DAE=DFC(=90 độ)
AE=CF(gt)
AD=FD(cmt)
Do đó\(\Delta\)ADE=\(\Delta\)FDC(2 cạnh góc vuông)
\(\Rightarrow\)ADE=FDC(2 góc t./ứ)
Mà ADE+EDC=180 độ
CDF+EDC=180 độ
Hay EDF=180 độ
\(\Rightarrow\)E,D,F thẳng hàng
a)xét ΔABD và ΔFED có:
\(\widehat{BAD}=\widehat{BFD}=90^o\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{FBD}\)(BD là phân giác của \(\widehat{ABF}\))
⇒ΔABD=ΔFED(c.huyền.g.nhọn)
b)gọi I là giao điểm của AF và BD
xét ΔABI và ΔFBI có:
BF=AB(ΔABD=ΔFED)
BI là cạnh chung
\(\widehat{ABI}=\widehat{FBI}\)(BD là phân giác của \(\widehat{ABF}\))
⇒ΔABI=ΔFBI(c-g-c)
⇒\(\widehat{BIA}=\widehat{BIF}\)(2 góc tương ứng)(1)
Mà \(\widehat{BIA}+\widehat{BIF}=180^o\)(2 góc kề bù)(2)
từ (1) và (2) ⇒\(\widehat{BIA}=\widehat{BIF}=\dfrac{180^o}{2}=90^o\)
vì ΔABI=ΔFBI⇒IA=IF
Do đó:BD là trung trực của AF(đ.p.cm)
c)xét ΔDCF có
DC là cạnh huyền
⇒DC>DF
Mà DF=AD
⇒DC>AD
d)Ta có:
AB=DF(ΔABD=ΔFED)
Mà AE=FC
⇒AB+AE=DF+FC
hay BE=DC
xét ΔBDC và ΔBDE có:
BE=DC(ch/m trên)
\(\widehat{EBD}=\widehat{CBD}\)(BD là phân giác của \(\widehat{EBC}\))
BD là cạnh chung
⇒ ΔBDC=ΔBDE(c-g-c)
⇒\(\widehat{BDE}=\widehat{BDC}\)(2 góc tương ứng)
Mà \(\widehat{BDA}=\widehat{BDF}\)(ΔABD=ΔFED)
⇒\(\widehat{BDE}-\widehat{BDA}=\widehat{BDC}-\widehat{BDF}\)
hay \(\widehat{ADE}=\widehat{FDC}\)(đ.p.cm)
ta có:\(\widehat{ADE}+\widehat{CDE}=180^o\)(2 góc kề bù)
Mà \(\widehat{ADE}=\widehat{FDC}\) ⇒\(\widehat{FDC}+\widehat{CDE}=180^o\)
hay E,D,F thẳng hàng(đ.p.cm)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED