Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O;R). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O;R) (B, C là các tiếp điểm). Lấy điểm D thuộc đường tròn (O;R) sao cho BD song song với AO, đường thẳng AD cắt đường tròn (O;R) tại điểm thứ hai là E. Gọi M là trung điểm của AC.
a. Chứng minh ME là tiếp tuyến của đường tròn (O;R).
b. Từ D kẻ tiếp tuyến với đường tròn (O;R), tiếp tuyến này cắt ME tại T. Gọi r1, r2, r3 lần lượt là bán kính các đường tròn nội tiếp của OME, OTE, OMT. Chứng minh khi A thay đổi thì r1 + r2 + r3 luôn không đổi.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ