Cho hàm số: \(y=-\dfrac{1}{2}x^2\).Khảo sát và vẽ đồ thị (P) của hàm số trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tập xác định : D = R
- Hàm số trên là hàm nghịch biến khi x > 0 và đồng biến khi x < 0
Bảng giá trị :
x -4 -2 0 2 4
y -8 -2 0 -2 -8
Với m = 2 ta có hàm số
- Tập xác định : D = R\{-1}.
- Sự biến thiên :
⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).
+ Cực trị : hàm số không có cực trị
+ Tiệm cận :
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số
⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên :
- Đồ thị :
Câu 2:
a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì
Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:
m+1=2
hay m=1
Vậy: m=1
Tập xác định: D = R
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )
Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)
Hàm số đạt cực đại tại x = 0; y CĐ = 0
Hàm số đạt cực tiểu tại x = 1 hoặc x = -1; y CT = −2
Đồ thị có hai điểm uốn:
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại
Tập xác định : R
Chiều biến thiên : hàm số đồng biến trên \(\left(-\infty;0\right)\)
hàm số nghịch biến trên \(\left(0;+\infty\right)\)
Lập bảng giá trị để vẽ đồ thị