Tìm \(x,y,z,t\) thuộc N* biết rằng: \(5x+5y+5z+5t+10=2xyzt\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x = 3y => x/3 = y/2 ; 5y = 7z => y/7 = z/5
x/3 = y/2 ; y/7 = z/5 => x/3 = 7y/14 ; 2y/14 = z/5 => x/21 = y/14 = z/10 => 5x/105 = 7y/98 = 5z/50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
5x/105 = 7y/98 = 5z/50 = 5x - 7y + 5z / 105 - 98 + 50 = 30/57
.......
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
Có \(2x=3y;5y=7z\) Suy ra \(5.2x=5.3y;3.5y=3.7z\)
\(\Rightarrow2.5.x=3.5.y=3.7.z\)
Chia các vế cho 2.3.5.7 ta được: \(\frac{x}{3.7}=\frac{y}{2.7}=\frac{z}{2.5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{5x}{5.21}=\frac{y}{14}=\frac{7y}{7.14}=\frac{z}{10}=\frac{5z}{5.10}\)
\(\Rightarrow\frac{x}{21}=\frac{5x}{105}=\frac{y}{14}=\frac{7y}{98}=\frac{z}{10}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}\)
\(\Rightarrow x=21.\frac{30}{37}\); \(y=14.\frac{30}{57}\); \(z=10.\frac{30}{57}\)
Ta co : 2x=3y;5y=7z va 5x-7y+5z=30
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{2y}{14}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}=?\)
cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé
Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)
\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)
Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)
Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy:
(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)
Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)
Đẳng thức xảy ra khi x = y = z
Ta có : \(\left(5x+5y+5z\right)^2-\left(25xy+25yz+25zx\right)\)
\(=25\left(\left(x+y+z\right)^2-\left(xy+yz+zx\right)\right)\)
Xét : \(\left(x+y+z\right)^2-\left(xy+yz+zx\right)=0\)
\(=>x^2+y^2+z^2+2xy+2yz+2zx-xy-yz-zx=0\)
\(=>x^2+y^2+z^2+xy+yz+zx=0\)
Nhân biểu thức với 2 ta được:
\(2x^2+2y^2+2z^2+2xy+2yz+2zx=0\)
\(=>\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2=0\)
\(=>x+y=y+z=z+x=0\)
Vạy để phân thức A xác định thì x,y,z không đồng thời bằng 0;
CHÚC BẠN HỌC TỐT...
Lời giải:
Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)
\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)
\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)
Thực hiện tương tự với những biểu thức còn lại suy ra:
\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)
\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)
\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)
\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))
Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)
Dấu bằng xảy ra khi \(x=y=z\)