K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

a. f(x) = 0 => 2x + 3 = 0

               => 2x       = 3

               => x         = 2/3

Vậy nghiệm của f(x) lá x = 2/3

             

2 tháng 5 2019

Câu 1 :

 Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)

                               \(\Leftrightarrow\left(x+1\right)^2-4=0\)

                               \(\Leftrightarrow\left(x+1\right)^2=4\)

                               \(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)

Câu 2 :

\(q\left(x\right)=x^2-10x+29\)

            \(=\left(x-5\right)^2+4\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)

Vậy đa thức trên ko có nghiệm

2 tháng 5 2019

dễ mà

câu 1

f(x)=x^2+2x-3

ta có f(x)=0

suy ra x^2+2x-3=0

tương đương:x^2-x+3x-3=0

tương đương:x(x-1)+3(x-1)=0

tương đương: (x-1)(x+3)=0

tương đương: x-1=0                  x=1

                        x+3=0                 x=-3

vậy đa thức f(x) có hai nghiệm là 1 và -3

câu 2: x^2-10x+29

tương đương: x^2-5x-5x+25+4

tương đương: x(x-5)-5(x-5)+4

tương đương: (x-5)(x-5)+4

tương đương: (x-5)^2+4

vì (x-5)^2> hoặc bằng 0 với mọi x

4>0 

suy ra x^2-10x+29 vô nghiệm

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

6 tháng 8 2020

a) f(x) = 2x - 10 = 0

<=> 2x = 10

<=> x = 5

b) thay x = -1 vào đa thức, ta có:

g(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = 0

g(-1) = -a + b - c + d = 0

g(-1) = -a - c = -b - d

g(-1) = a + c = b + d (đpcm)

6 tháng 8 2020

a) f(x) có nghiệm <=> 2x - 10 = 0

                              <=> 2x = 10

                              <=> x = 5

b) g(x) = ax3 + bx2 + cx + d

x = -1 là nghiệm của g(x) 

=> g(-1) = a(-1)3 + b(-1)2 + c(-1) + d = 0

=> g(-1) = -a + b - c + d = 0

=> g(-1) = -a - c = -b - d 

=> g(-1) = a + b = b + d 

=> đpcm 

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 4 2020

a, 2x^2 + 5x = 0

=> x(2x + 5)  = 0

=> x = 0 hoặc 2x + 5 = 0

=> x = 0 hoặc x = -5/2

b. x^2 - 1 = 0

=> (x - 1)(x + 1) = 0

=> x - 1 = 0 hoặc x + 1 = 0

=> x = 1 hoặc x - -1

11 tháng 5 2020

Trình bày đề bài cho dễ nhìn bạn eyy :v 

Khó nhìn như này thì God cũng chịu -.-

11 tháng 5 2020

mù mắt xD ghi rõ đề đi bạn ơi !

Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)

+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)

+Thay x=-2, ta có: 

\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\) 

Giải hệ pt, ta được: a=0, b=-3.

28 tháng 5 2021

Ta có : f(x) = 0 

⇔ ( x-1)(x+2) = 0 

⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x) 

Thay x = 1 vào g(x) = 0 

⇔ 13 + a.1+ b.1 + 2 = 0 

⇔ 1 + a + b + 2 = 0 

⇔ a + b = -3 (1) 

Thay x = -2 vào g(x) = 0 

⇔ (-2)3 + a.(-2)+ b.(-2) + 2 = 0 

⇔ -8 + a.4 - 2.b + 2 = 0 

⇔ 4a - 2b = 6 

⇔ 2.(2a - b ) = 6 

⇔ 2a - b = 3 (2) 

Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)