( x_ 1/4 ) : 3/4 = 4/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-\left(m+2\right)x+m=0\)
(a=1;b=-(m+2);c=m)
Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)
\(=\left(m+2\right)^2-4m\)
\(=m^2+2m.2+2^2-4m\)
\(=m^2+4m+4-4m\)
\(=m^2+4\)
Vì\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)
Vậy pt luôn có nghiện với mọi m
b,Xét hệ thức vi-ét,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)
Theo đề bài ,ta có:
\(x_1+x_2-3x_1x_2=2\)
\(\Leftrightarrow m+2-3m=2\)
\(\Leftrightarrow-2m+2=2\)
\(\Leftrightarrow-2m=2-2\)
\(\Leftrightarrow m=0\)[t/m(1)]
Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho
a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)
\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)
Câu 10 : 45 % của 180 cây là :
A. 81cây B. 81 C. 400 D. 400 cây
Bài 2 :
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)
Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)
\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)
x1+x2+x3+...+x2008=2008
\(\Leftrightarrow\)(x1-1)+(x2-1)+(x3-1)+...+(x2008-1)=0 (1)
x31+x32+x33+...+x32008=x41+x42+x43+...+x42008
Lấy vế phải trừ vế trái ta được :
x31(x1-1)+x32(x2-1)+x33(x3-1)+...+x32008(x2008-1)=0 (2)
Lấy (1) (2) rồi đặt nhân tử chung là ra cái này
(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Ta thấy (x31-1)(x1-1) = (x1-1)(x21+x1+1)(x1-1) = (x1-1)2(x21+x1+1)\(\ge\)0 Với mọi x
CMTT : (x23-1)(x2-1) \(\ge\)0 Với mọi x
.............................................
(x20083-1)(x2008-1) \(\ge\)0 Với mọi x
\(\Rightarrow\)(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)\(\ge\)0
Mà(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Đến đây bạn tự suy ra x1=1; x2=1;...;x2008=1 nhé!
Mình hơi bận nên không giải tiếp được bán nhé!
Mong bạn thông cảm
Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(2m+2\right)^2-4\left(-4m-12\right)=4m^2+8m+4+16m+48\)
\(=4m^2+24m+52=4m^2+2.2m.6+36+16=\left(2m+6\right)^2+16>0\)
Vậy ta có đpcm
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=-4m-12\end{cases}}\)
Ta có : \(x_1-x_2=4\Leftrightarrow\left(x_1-x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16\)(*)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(-4m-12\right)\)
\(=4m^2+16m+28\)
Thay vào (*) ta được : \(4m^2+16m+28-2\left(-4m-12\right)=16\)
\(\Leftrightarrow4m^2+24m+52=0\Leftrightarrow m=-3\pm2i\)
\(A^2=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}-2\cdot\sqrt{\dfrac{x_1}{x_2}\cdot\dfrac{x_2}{x_1}}\)
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}-2\)
\(=\dfrac{\left(-5\right)^2-2\cdot4}{4}-2=\dfrac{25-8-8}{2}=\dfrac{9}{2}\)
=>A=3/căn 2
\(T=\dfrac{\left(x1\cdot\sqrt{x_2}+x_2\cdot\sqrt{x_1}\right)}{x1^2+x_2^2}\)
\(=\dfrac{\sqrt{x_1\cdot x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\left(x_1+x_2\right)^2-2x_1x_2}\)
\(=\dfrac{4\cdot\sqrt{x_1+x_2+2\sqrt{x_1x_2}}}{9^2-2\cdot16}=\dfrac{4\cdot\sqrt{9+2\cdot4}}{81-32}\)
\(=\dfrac{4\sqrt{17}}{49}\)
theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+3}{2}\\x_1.x_2=\dfrac{m+1}{4}\end{matrix}\right.\)
để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
<=>\(\dfrac{\dfrac{2m+3}{2}}{\dfrac{m+1}{4}}< 4\)<=>\(\dfrac{2\left(2m+3\right)}{m+1}< 4\)
<=>4m+6<4m+4<=>6<4
không có giá trị m nào để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
\(x-\frac{1}{4}=\frac{4}{9}\times\frac{3}{4}\)
\(x-\frac{1}{4}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
x - 1/4 = 4/9 * 3/4
x - 1/4 = 1/3
x = 1/3 + 1/4
x = 4/12 + 3/12
x = 7/12