Cho tam giác ABC vuông tại A , góc B = 60° .Tia phân giác góc B cắt AC ở D. Kẻ AH vuông góc BC (H€BC) ,DE vuông góc BC tại E
a chứng minh tam giác ABD bằng tam giác bde
B Chứng minh E là trung điểm của BC và AD bé hơn DC
C biết AB = 2 cm Tính BC AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có :
BD ( cạnh chung )
\(\widehat{ABD}=\widehat{EBD}\)( gt )
Suy ra : \(\Delta ABD\)= \(\Delta EBD\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)AB = BE
\(\Rightarrow\)\(\Delta ABE\)cân tại B mà \(\widehat{ABE}=60^o\)nên \(\Delta ABE\)đều
c) vì \(\widehat{ABC}+\widehat{ACB}=90^o\)\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)
Mà \(\widehat{ABD}=\widehat{DBE}=30^o\)
\(\Rightarrow\)\(\Delta DBC\)cân tại D có DE là đường cao nên cũng là trung tuyến
\(\Rightarrow\)E là trung điểm của BC
d) \(\Delta ABE\)đều có AH là đường cao nên cũng là đường trung trực
\(\Rightarrow\)BF = EF
\(\Rightarrow\)\(\Delta BFE\)cân tại F
\(\Rightarrow\)\(\widehat{FBE}=\widehat{FEB}\)
Mà \(\widehat{FBE}=\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{ACB}=\widehat{FEB}\)
Mà 2 góc này ở vị trị đồng vị nên EF // AC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
góc ABE=góc DBE
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ
góc HAD+góc BDA+90 độ
góc BAD=góc BDA
=>góc CAD=góc HAD
=>AD làphân giác của góc HAC
a) Ta có:
- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.
- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.
Vậy tam giác ABD = tam giác EBD.
b) Ta có:
- Góc ABD = góc EBD (do chứng minh ở câu a).
- Góc ADB = góc EDB (do cùng là góc vuông).
- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).
- Do đó, BD vuông góc với AE.
- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.
c) Ta có:
- Tia Cx vuông góc với tia BD tại H.
- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.
- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.
- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).
- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE
c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
Ta có: BD\(\perp\)AE
AE//CF
Do đó: BD\(\perp\)CF
mà BD\(\perp\)CH
và CH,CF có điểm chung là C
nên C,H,F thẳng hàng